Skip to main content

Superhalogens in the Design of Electrolytic Salts

  • Chapter
  • First Online:
Superhalogens

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 50 Accesses

Abstract

Lithium-ion battery (LIB) powers modern electronic devices. A typical LIB consists of a cathode, an anode, and electrolytic salts dissolved in organic solvents. In this Chapter, the role of superhalogen in the design of electrolytic salts for LIBs has been discussed. Noting the fact that all commercial electrolytic salts are made up of superhalogen anions, new superhalogen anions can enrich the family of these salts. These new salts might increase the Li+ ion conduction with enhanced environmental safety and aqueous stability. Some of these claims have been verified experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dominey LA (1994) Lithium Batteries. Elsevier Science B. V, Netherlands

    Google Scholar 

  2. Giri S, Behera S, Jena P (2014) Angew Chem Int Ed 53:13916–13919

    Article  CAS  Google Scholar 

  3. Gutsev GL, Boldyrev AI (1981) Chem Phys 56:277–283

    Article  CAS  Google Scholar 

  4. Gutsev GL, Boldyrev AI (1983) Chem Phys Lett 101:441–445

    Article  CAS  Google Scholar 

  5. Boldyrev AI, von Nissen W (1991) Chem Phys 155:71–78

    Article  CAS  Google Scholar 

  6. Pathak B, Samanta D, Ahuja R, Jena P (2011) ChemPhysChem 12:2423–2428

    Article  CAS  PubMed  Google Scholar 

  7. Srivastava AK, Misra N (2015) Mol Phys 113:866–870

    Article  CAS  Google Scholar 

  8. Srivastava AK, Misra N (2016) Polyhedron 117:422–426

    Article  CAS  Google Scholar 

  9. Sun Y-Y, Li J-F, Zhou F-Q, Li J-L, Yin B (2016) Phys Chem Chem Phys 18:28576–28584

    Article  CAS  PubMed  Google Scholar 

  10. Swierszcz I, Anusiewicz I (2011) Chem Phys 383:93

    Article  CAS  Google Scholar 

  11. Boere RT, Derendorf J, Jenne C, Kacprzak S, Kebler M, Riebau R, Riedel S, Roemmele TL, Rεhle M, Scherer H, Vent-Schmidt T, Warneke J, Weber S (2014) Chem Eur J 20:4447–4459

    Article  CAS  PubMed  Google Scholar 

  12. Zhao H, Zhou J, Jena P (2016) Angew Chem 128:3768–3772

    Article  Google Scholar 

  13. Fang H, Jena P (2017) J Phys Chem C 121:7697–7702

    Article  CAS  Google Scholar 

  14. Tutusaus Q, Mohtadi R, Arthur TS, Mizuno F, Nelson EG, Sevryugina YV (2015) Angew Chem Int Ed 54:7900–7904

    Article  CAS  Google Scholar 

  15. Tang WS, Unemoto A, Zhou W, Stavila V, Matsuo M, Wu H, Orimo S, Udovic TJ (2015) Energy Environ Sci 8:3637–3645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, A.K. (2023). Superhalogens in the Design of Electrolytic Salts. In: Superhalogens. SpringerBriefs in Molecular Science. Springer, Cham. https://doi.org/10.1007/978-3-031-37571-2_5

Download citation

Publish with us

Policies and ethics