Skip to main content

Superhalogens in the Design of Superacids

  • Chapter
  • First Online:
Superhalogens

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 51 Accesses

Abstract

H2SO4 is the strongest mineral acid having deprotonation energy as low as approximately 300 kcal/mol. Superacids possess even lower deprotonation energy than 300 kcal/mol, e.g., HSbF6. Note that SbF6 is a superhalogen. In this Chapter, the possibility of designing new superacids by protonation of superhalogen anions has been discussed. Using a variety of superhalogens, it has been found that their protonated complexes may indeed behave as superacids. Further, their acidity increases with the increase in the VDE of constituting anions. It has been emphasized that the protonation of superhalogen anions is a rational route to design new superacids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hall NF, Conant JB (1927) J Am Chem Soc 49:3062–3070

    Article  Google Scholar 

  2. Olah GA, Prakash GK, Sommer J (1979) Science 206:13

    Article  CAS  PubMed  Google Scholar 

  3. Olah GA, Prakash GK, Sommer J (1985) Superacids. Wiley, New York

    Google Scholar 

  4. Czapla M, Skurski P (2015) Chem Phys Lett 630:1–5

    Article  CAS  Google Scholar 

  5. Sikorska C, Skurski P (2012) Chem Phys Lett 536:34–38

    Article  CAS  Google Scholar 

  6. Srivastava AK, Misra N (2015) Polyhedron 102:711–714

    Article  CAS  Google Scholar 

  7. Czapla M, Anusiewicz I, Skurski P (2016) Chem Phys 465–466:46–51

    Article  Google Scholar 

  8. Srivastava AK, Kumar A, Misra N (2017) New J Chem 41:5445–5449

    Article  CAS  Google Scholar 

  9. Gutsev GL, Boldyrev AI (1981) Chem Phys 56:277–283

    Article  CAS  Google Scholar 

  10. Czapla M, Skurski P (2015) J Phys Chem A 119:12868

    Article  CAS  PubMed  Google Scholar 

  11. Srivastava AK, Kumar A, Misra N (2017) J Fluor Chem 197:59–62

    Article  CAS  Google Scholar 

  12. Zhao R-F, Zhou F-Q, Xu W-H, Li J-F, Li C-C, Li J-L, Yin B (2018) Inorg. Chem Front 5:2934–2947

    CAS  Google Scholar 

  13. Luo L, Zhou F-Q, Zhao R-F, Li J-F, Wu L-Y, Li J-L, Yin B (2019) Dalton Trans 48:16184–16198

    Article  CAS  PubMed  Google Scholar 

  14. Zhou F-Q, Zhao R-F, Li J-F, Xu W-H, Li C-C, Luo L, Li J-L, Yin B (2019) Phys Chem Chem Phys 21:2804–2815

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, A.K. (2023). Superhalogens in the Design of Superacids. In: Superhalogens. SpringerBriefs in Molecular Science. Springer, Cham. https://doi.org/10.1007/978-3-031-37571-2_4

Download citation

Publish with us

Policies and ethics