Skip to main content

Research-Based Contribution on ICT as Learning Challenges in Physics Education

  • Chapter
  • First Online:
New Challenges and Opportunities in Physics Education

Part of the book series: Challenges in Physics Education ((CPE))

  • 218 Accesses

Abstract

The new technologies and in particular those of information and communication are tools and methods in physics education, to have experience in specific areas and proper physics methods. A computer equipped with sensors and appropriate software constitutes a powerful acquisition system for the didactic lab of good efficiency, reliability, and accuracy, which allows immediate data visualization, and integrates different measuring instruments, software, and hardware. This allows students not only to make good measurements in the laboratory, but also to experiment with methodologies typical of physics and modern research laboratories, such as in-person and remote measurement activities, computerized data analysis, and modeling. These opportunities are amplified nowadays by the possibility of using smartphones as measuring instruments thanks to free apps that make use of the sensors with which they are equipped. New possibilities for active teaching, both in-presence and distance learning, have opened up by new technologies for physics education and, in particular, for student learning. Some of the main ones are discussed in the present contribution for experimental, modeling, simulation, and active student involvement activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • F. Abd-El Khalick et al., Inquiry in science education: international perspectives. Int. J. Sci. Educ. 88(3), 397–419 (2004)

    Google Scholar 

  • M. Abu Baker Ilyas, A.M. Al-Tabtabaie, Improving knowledge delivery and information retention through ‘smarter’ interactive whiteboards, in Proceedings of International Conference on Computers in Education (2004)

    Google Scholar 

  • W.K. Adams, Student engagement and learning with PhET interactive simulations. Il Nuovo Cimento 33C(3), 21–32 (2010)

    Google Scholar 

  • O. Akbaş, H.M. Pektaş, The effects of using an interactive whiteboard on the academic achievement of university students. Asia-Pac. Forum Sci. Learn. Teach. 12(2), 1 (2011)

    Google Scholar 

  • J.D. Ametepe, N. Khan, Teaching physics during COVID-19 pandemic. Phys. Educ. 56, 065030 (2021)

    Article  ADS  Google Scholar 

  • L. Bao, K. Koenig, Physics education research for 21st century learning. Discip. Interdiscip. Sci. Educ. Res. 1, 2 (2019). https://doi.org/10.1186/s43031-019-0007-8

    Article  ADS  Google Scholar 

  • I. Beatty, Transforming student learning with classroom communication systems. Educ. Center Appl. Res. 3, 1–3 (2004). http://www.e-cause.edu/ECAR/TransformingStudentLearningwit/157511

  • I. Beatty, Teaching with Clickers: How, for What, and with What Mind-Set? (University of North Carolina Greensboro, Greensboro, 2011). http://ianbeatty.com/aapt-2011

  • R.J. Beichner, The impact of video motion analysis on kinematics graphs interpretation skills. Am. J. Phys. 64, 1272–1277 (1996)

    Article  ADS  Google Scholar 

  • R.J. Beichner, Instructional technology research and development in a U.S. Physics Education Group. Eur. J. Eng. Educ. 31(4) 383–393 (2006)

    Google Scholar 

  • J. Benacka, Numerical modeling in secondary school physics and biology. Spreadsh. Educ. (eJSiE) 2(3) (2008). http://epublications.bond.edu.au/ejsie/vol2/iss3/3

  • L. Benciolini, M. Michelini, A. Odorico, Formalizing thermal phenomena at 3–6 year old, in Developing Formal Thinking in Physics, ed. by M. Michelini, M. Cobal (Forum, Udine, 2002), pp. 391–396. ISBN: 88-8420-148-9

    Google Scholar 

  • J. Bernhard, Does active engagement curricula give long-lived conceptual understanding?, in Physics Teacher Education Beyond 2000, ed. by R. Pinto, S. Surinach (Elsevier, Paris, 2001), pp. 749–752

    Google Scholar 

  • J. Bernhard, Physics learning and microcomputer based laboratory (MBL), in Science Education Research in the Knowledge-Based Society, ed. by D. Psillos et al. (Academic Press, Kluwer, 2003), pp. 313–321

    Google Scholar 

  • P. Bitzenbauer, Effect of an introductory quantum physics course using experiments with heralded photons on preuniversity students’ conceptions about quantum physics. Phys. Rev. Phys. Educ. Res. 17, 020103 (2021)

    Google Scholar 

  • N. Bjurholt, M. Vetleseter Bøe, Remote physics teaching during the COVID-19 pandemic: losses and potential gains. Phys. Educ. 58, 015004 (2023). https://doi.org/10.1088/1361-6552/ac96be

  • S. Bosio, V. Capocchiani, M. Michelini, L. Santi, Computer on-line to explore thermal properties of matter, in Teaching the Science of Condensed Matter, ed. by M. Michelini et al. (Udine, Forum, 1996), pp. 351–355

    Google Scholar 

  • F. Bradamante, M. Michelini, A. Stefanel, The modelling in the sport, in Teaching and Learning Physics in New Contexts, ed, by E. Mechlova, L. Konicek (GIREP, Ostrava, 2004), pp. 206–208. ISBN: 80-7042-378-1

    Google Scholar 

  • N.St.J. Braithwaite, R. Lambourne, The multimedia in physics teaching and learning community. J. Phys. Conf. Ser. 1223, 011001 (2019). https://doi.org/10.1088/1742-6596/1223/1/011001

  • P. Bronner, A. Strunz, C. Silberhorn, J.-P. Meyn, Interactive screen experiments with single photons. Eur. J. Phys. 30, 345 (2009)

    Article  Google Scholar 

  • D. Brown, W. Christian, Simulating what you see: combining computer modeling with video analysis, in Proceedings of MPTL-16, ed. by S. Divjak (MPTL, Ljubljana, 2011), pp. 15–17

    Google Scholar 

  • D. Buongiorno et al., Alternanza scuola-lavoro nella prospettiva di ricerca con APP sul suono, in Nuovi metodi e saperi, ed. by G. Adorni et al. (AICA, Bologna, 2018), pp. 391–400. ISBN: 978-88-98091-47-8

    Google Scholar 

  • S. Caravita, Costruzione collaborativa di prodotti e tecnologie della comunicazione. Ital. J. Educ. Technol. 3, 6 (1995)

    Google Scholar 

  • S. Caravita, O. Hallden, Reframing the problem of conceptual change. Learn. Instr. 4, 89 (1995)

    Article  Google Scholar 

  • S. Carruthers, U. Stege, On evaluating human problem solving of computationally hard problems. J. Probl. Solv. 5, 4 (2013)

    Google Scholar 

  • CBE—Life Sciences Education (LSE), Describing teaching and learning at the intersection of biology and physics. CBE Life Sci. Educ. 12 (2013)

    Google Scholar 

  • M. Ceberio, J.M. Almudi, A. Franco, Design and application of interactive simulations in problem-solving in university-level physics education. J. Sci. Educ. Technol. 25, 590–609 (2016). https://doi.org/10.1007/s10956-016-9615-7

  • I. Cescon, A. Stefanel, Polarimetry measurement in a physics lab. Phys. Teach. 60(2), 144–148 (2022). https://doi.org/10.1119/10.0009425

    Article  ADS  Google Scholar 

  • S.R.C.P. Challapalli, M. Michelini, A. Stefanel, Dall’esperimento al modello con la LIM nella scuola di base: il caso dell’ottica, in Didamatica (2012). http://mondodigitale.aicanet.net/2012-2/didamaica/PAPER/FULL/F153.pdf

  • S.R.C.P. Challapalli et al., L’uso dei Clicker per il personale coinvolgimento degli studenti di scienze della formazione nell’apprendimento della fisica, in Tecnologie Informatiche per la Didattica (2012). ISBN: 978-88-905406-7-7. http://mondodigitale.aicanet.net/2012-2/didamaica/PAPER/FULL/F143.pdf

  • K. Cheng, A. Pietan, M. Calglar, H. Dulli, Integration of computer-based pre-, in and post-lecture activities in physics, in AAAPT 2011 (2011)

    Google Scholar 

  • M. Chiofalo, C. Foti, M. Michelini, L. Santi, A. Stefanel, Games for teaching/learning quantum mechanics: a pilot study with high-school students. Educ. Sci. 12, 446 (2022)

    Article  Google Scholar 

  • W. Christian, F. Esquembre, B. Mason, Easy Java simulations and ComPADRE OSP collection. Il Nuovo Cimento 33C(3), 33–42 (2010)

    Google Scholar 

  • W. Christian, F.-K. Hwang, Magnetic Field from Loops Model (2014). https://www.compadre.org/osp/items/detail.cfm?ID=8311

  • J. Clement, Model based learning as a key research area for science education. Int. J. Sci. Educ. 22, 1041–1053 (2000)

    Article  Google Scholar 

  • P. Cooney, Spreadsheet Physics Resources (2003). http://sites.millersville.edu/pjcooney/ssresour.html

  • F. Corni, M. Michelini, L. Santi, A. Stefanel, Sensori on-line per la formazione insegnanti, in Comunità Virtuale, ed. by M. Michelini, M. Pighin, vol. 2 (Forum, Udine, 2005), pp. 1149–1161

    Google Scholar 

  • A. Corrada-Emmanuel, I.D. Beatty, W.J. Gerace, Group Discovery with Multiple-Choice Exams and Consumer Surveys: The Group-Question-Answer Model (University of Massachusetts, Amherst, 2007)

    Google Scholar 

  • D. Crăciun, M. Bunoiu, Boosting physics education through mobile augmented reality. AIP Conf. Proc. 1916, 050003 (2017). https://doi.org/10.1063/1.5017456

    Article  Google Scholar 

  • D. Darmaj, D. Dwi Agus Kurniawan, A. Artha Lumbantoruan, S.C. Samosir, Mobile learning in higher education for the industrial revolution 4.0. Int. J. Interact. Mob. Technol. 13(9) (2019). https://doi.org/10.3991/ijim.v13i09.10948

  • F. Delgado, Teaching physics for computer science students in higher education during the COVID-19 pandemic. Future Internet 13(2), 35 (2021). https://doi.org/10.3390/fi13020035

    Article  Google Scholar 

  • F. Delgado, Post-COVID-19 transition in university physics courses. Educ. Sci. 12, 627 (2022). https://doi.org/10.3390/educsci12090627

    Article  Google Scholar 

  • A.K. Dickerson et al., Mosquitoes survive raindrop collisions by virtue of their low mass. PNAS 109(25), 9822–9827 (2012)

    Article  ADS  Google Scholar 

  • M. El Hadi et al., Real time free fall investigation for educational purposes using Arduino Uno board. Phys. Educ. 55, 055027 (2020)

    Article  ADS  Google Scholar 

  • ESM, Educational studies in mathematics: bodily activity and imagination in mathematics learning. PME Spec. Issue 57(3) (2004)

    Google Scholar 

  • F. Esquembre, Computers in physics education. Comput. Phys. Commun. 147, 13–18 (2002)

    Article  ADS  Google Scholar 

  • M. Euler, Physics and physics education beyond 2000, in PhyTEB200, ed. by R. Pintò, S. Surinac (Elsevier, Paris, 2001), p. 3

    Google Scholar 

  • M. Euler, Quality development challenges to physics education, in Quality Development in Teacher Education, ed. by M. Michelini (Forum, Udine, 2004), pp. 17–30

    Google Scholar 

  • M. Euler, A. Müller, Physics learning and the computer, in Proceedings II International ESERA Conference, ed. by M. Komorek et al. (1999)

    Google Scholar 

  • European Union, Recommendation of the European Parliament and of the Council of 18 December 2006 on Key Competences for Lifelong Learning (2006), https://eur-lex.europa.eu/eli/reco/2006/962/oj

  • Final Report Hope Project WG2-New Competences for Physics Students (2017), http://hopenetwork.eu/content/final-report-wg2

  • N. Finkelstein, W. Adams, C. Keller, K. Perkins, C. Wieman, High-tech tools for teaching physics. Merlot J. Online Teach. Learn. (2006). https://jolt.merlot.org/vol2no3/finkelstein.pdf

  • W.P.S. Freitas et al., Arduino-based experiment demonstrating Malus’s law. Phys. Educ. 53, 035034 (2018). https://doi.org/10.1088/1361-6552/aab43d

    Article  ADS  Google Scholar 

  • L. Galliani, Formazione degli insegnanti e competenze nelle tecnologie della comunicazione educative. Ital. J. Educ. Res. 2–3, 93–103 (2009)

    Google Scholar 

  • A. Gallo, E. Mazzega, M. Michelini, Impiego della modellizzazione dinamica nell’insegnamento della TD. La Fis. nella Scuola XXII(S4), 50 (1989)

    Google Scholar 

  • M. Gatti, L.G. González, M.G. Mereu, C. Tagliaferro, L’impatto delle tecnologie dell’informazione e della comunicazione sulle competenze professionali e sulla formazione (CEDEFOP, Salonicco, 1998), https://www.cedefop.europa.eu/files/5091_it.pdf; (2022), https://www.cedefop.europa.eu/en/publications/9130#group-downloads

  • M. Gervasio, M. Michelini, TERMOCRONO. Un semplice sistema economico e flessibile per misure di temperatura in tempo reale, in Didamatica 2006, ed. by A. Andronico et al. (AICA, Cagliari, 2006), pp. 522–529

    Google Scholar 

  • M. Gervasio, M. Michelini, A USB probe for resistivity versus temperature and Hall coefficient measurements, in MPTL14 Proceeding (2009). http://www.fisica.uniud.it/URDF/mptl14/contents.htm

  • M. Gervasio, M. Michelini, Lucegrafo. A simple USB data acquisition system for diffraction experiments, in MPTL14 Proceeding (2009) CD-ROM. http://www.fisica.uniud.it/URDF/mptl14/contents.htm

  • G. Gervasio, M. Michelini, L. Santi, A. Stefanel, R. Viola, I progetti MOSEM e la superconduttività per una innovazione didattica a scuola. G. Fis. 55(4), 363–373 (2014)

    Google Scholar 

  • G. Giugliarelli et al., Tecnologie moderne e progettualità nell’attività sperimentale. La Fis. nella Scuola XXVII, 4 S, 113 (1994)

    Google Scholar 

  • D. Glover, D. Miller, D. Averis, V. Door, The interactive whiteboard: a literature survey. Technol. Pedag. Educ. 14(2), 155–170 (2005)

    Article  Google Scholar 

  • D.J. Grayson, Physics education for 21st century graduates. J. Phys. Conf. Ser. 1512, 012043 (2020)

    Google Scholar 

  • S. Grober, M. Vetter, B. Eckert, H.J. Jodl, Experimenting from a distance-remotely controlled laboratory. Eur. J. Phys. 28, S127–S141 (2007)

    Article  Google Scholar 

  • S. Grober, M. Vetter, B. Eckert, H.J. Jodl, Experimenting from a distance RCL-experiments for teaching physics at high-school (2013). http://pen-physik.de/w_jodl/Docs/book-rcl_small.pdf

  • L. Grosslight, C. Unger, E. Jay, C.L. Smith, Understanding models and their use in science. J. Res. Sci. Teach. 28(9), 799–822 (1991)

    Article  Google Scholar 

  • R. Hake, Interactive-engagement vs. traditional methods. Am. J. Phys. 66, 64–74 (1998)

    Google Scholar 

  • A. Heck, E. Kędzierska, T. Ellermeijer, Design and implementation of an integrated computer working environment. J. Comput. Math. Sci. Teach. 28(2), 147–161 (2009)

    Google Scholar 

  • P.R.L. Heron, D.E. Meltzer, The future of physics education research: intellectual challenges and practical concerns. Am. J. Phys. 73, 390 (2005). https://doi.org/10.1119/1.1858480

    Article  ADS  Google Scholar 

  • D. Hestenes, Toward a modeling theory of physics instruction. Am. J. Phys. 55, 440–454 (1987)

    Article  ADS  Google Scholar 

  • D. Hestenes, Modeling software for learning and doing physics, in Thinking Physics for Teaching, ed. by C. Bernardini et al. (Plenum, New York, 1995), pp. 25–65

    Google Scholar 

  • R. Hobbs, Blurring the lines: ILD’s (and other activities) in an integrated lecture-lab environment, WS, in AAAPT 2011 (2011)

    Google Scholar 

  • A. Hofstein, The laboratory in chemistry education. Chem. Educ. Res. Pract. 5(3), 247–264 (2004)

    Article  Google Scholar 

  • A. Hofstein, V.N. Lunetta, The laboratory in science education: foundations for the twenty-first century. Sci. Educ. 88(1), 28–54 (2004)

    Article  Google Scholar 

  • A.M. Hoskinson et al., Bridging physics and biology teaching through modeling. Am. J. Phys. 82(5), 434–441 (2014)

    Article  ADS  Google Scholar 

  • http://modellus.fct.unl.pt/

  • http://www.compadre.org/portal/index.cfm

  • https://www.i2u2.org/

  • https://www.ises.info/index.php/en

  • https://phet.colorado.edu/it/simulation/legacy/band-structure

  • B. Huang, Open-source hardware—microcontrollers and physics education, in 122 ASEE, Seattle, 14–17 June 2015

    Google Scholar 

  • IP (2005), https://www.design-simulation.com/ip/simulations.php, and IP (2007), http://www.interactivephysics.com

  • A.H. Johnstone, A. Al-Shuaili, Learning in the laboratory; some thoughts from the literature. U. Chem. Ed. 5, 42–51 (2001)

    Google Scholar 

  • L. Juskaite, A. Ipatovs, A. Kapenieks, Mobile technologies in physics education in Latvian secondary schools. Period. Eng. Nat. Sci. 7(1), 187–196 (2019). Available online at: http://pen.ius.edu.ba

  • E. Kedzierska et al., MOSEM 2 project: integration of data acquisition, modelling, simulation and animation. Il Nuovo Cimento 33C, 3 (2010). https://doi.org/10.1393/ncc/i2010-10616-y

  • J. Kirstein, V. Nordmeier, Multimedia representation of experiments in physics. Eur. J. Phys. 28, S115 (2007)

    Article  Google Scholar 

  • J. Kirstein, S. Haase, T. Mühlenbruch, V. Nordmeier, 20 Jahre Interaktive Bildschirmexperimente. PhyDidB Beiträge Frühjahrstagung 2016 (2016). http://www.phydid.de/index.php/phydid-b/article/view/739/872

  • P. Klein, J. Kuhn, A. Müller, S. Gröber, Video analysis in introductory mechanics physics courses, in Multidisciplinary Research on Teaching and Learning, ed. by M. Palgrave (2015)

    Google Scholar 

  • R.D. Knight, Five Easy Lessons: Strategies for Successful Physics Teaching (Addison-Wesley, Boston, 2002)

    Google Scholar 

  • A. Kohnle, C. Baily, A. Campbell, N. Korolkova, Enhancing student learning of two-level quantum systems. Am. J. Phys. 83(6), 560–566 (2015)

    Article  ADS  Google Scholar 

  • G. Kortemeyer, The assessment continuum, in AAAPT 2011 (2011)

    Google Scholar 

  • Z.A.C. Krusberg, Emerging technologies in physics education. J. Sci. Educ. Technol. 16, 401–411 (2007). https://doi.org/10.1007/s10956-007-9068-0

    Article  Google Scholar 

  • R. Lambourne, Laboratory-based teaching and the physics innovations centre for excellence in teaching and learning. Eur. J. Phys. 28(3), S29–S36 (2007). https://doi.org/10.1088/0143-0807/28/3/S03

    Article  Google Scholar 

  • R. Lambourne, Physics and distance education, in Connecting Research in Physics Education with Teacher Education, ed. by M. Vicentini, E. Sassi (I.C.P.E. Book © International Commission on Physics Education, 2008). http://iupap-icpe.org/publications/teach2/Lambourne.pdf

  • W.B. Lane, Self-reported in-class emotional, in AAAPT 2011 (2011)

    Google Scholar 

  • B.V. Liengme, Modelling Physics with Microsoft Excel (Morgan & Claypool Publishers, San Rafael, 2014)

    Book  Google Scholar 

  • P.L. Lijnse, “Developmental research” as a way to an empirically based “didactical structure” of science. Sci. Educ. 79, 189–199 (1995)

    Article  Google Scholar 

  • S. Lindaas, A research methodology for using clickers, WS, in AAAPT 2011 (2011)

    Google Scholar 

  • M.C. Linn, S. His, Computers, Teaching, Peers: Science Learning Partners (Lawrence Erlbaum Associates, Mahwah, NJ, 2000)

    Book  Google Scholar 

  • B. Martin, W. Brouwer, D. Austen, Creating digital learning objects to teach abstract ideas in modern physics and astronomy, in CBLIS 2010, ed. by C. Constantonou et al. (Oelizk, Warsaw, 2010), pp. 31–40

    Google Scholar 

  • E. Martinez, V. Carbonell, M. Florez, J. Amaya, Simulations as a new physics teaching tool. Comput. Appl. Eng. Educ. 18(4), 757–761 (2010). https://doi.org/10.1002/cae.20266

    Article  Google Scholar 

  • B. Mason et al., Report and recommendations on multimedia materials for teaching and learning QP. Il Nuovo Cimento 38C, 105–116 (2015)

    Google Scholar 

  • E. Mazur, Can we teach computers to teach? Comput. Phys. 5, 31 (1991). https://doi.org/10.1063/1.4822968

    Article  ADS  Google Scholar 

  • L.C. McDermott, How we teach and how students learn: a mismatch? Am. J. Phys. 61 (1993)

    Google Scholar 

  • L.C. McDermott, Oersted medal lecture 2001: physics education research—the key to student learning. Am. J. Phys. 69, 1127 (2001)

    Article  ADS  Google Scholar 

  • J. McGonigal, Reality Is Broken: Why Games Make Us Better and How They Can Change the World (J. Cape, London, 2011)

    Google Scholar 

  • A. Messeri, La questione delle competenze. Magellano. Riv. L’orient. 22, 1–4 (2004)

    Google Scholar 

  • M. Michelini, L’elaboratore nel laboratorio di fisica: alcune considerazioni di carattere generale. La Fis. nella Scuola XXI, 2, IR, 159 (1988)

    Google Scholar 

  • M. Michelini, Modellizzazione ed esperimenti on-line. La Fis. nella Scuola XXIV, 4IR, 44–68 (1991)

    Google Scholar 

  • M. Michelini, L’elaboratore nel laboratorio didattico di fisica: nuove opportunità per l’apprendimento. G. Fis. XXXIII(4), 269–294 (1992)

    Google Scholar 

  • M. Michelini, Quale laboratorio per la formazione degli insegnanti, in Uso del Laboratorio e Insegnamento della Fisica (Garamond, Roma, 1999)

    Google Scholar 

  • M. Michelini, Building bridges between common sense ideas and a physics description of phenomena, in New Trends in STE, ed. by L. Menabue, G. Santoro, vol. 1 (CLUEB, Bologna, 2010), pp. 257–274

    Google Scholar 

  • M. Michelini, A. Stefanel, Hands-on sensors for the exploration of light polarization, in Informal Learning and Public Understanding, ed. by G. Planinsic, A. Mohoric (GIREP, Ljubljana, 2006), pp. 202–208. ISBN: 961-6619-00-4

    Google Scholar 

  • M. Michelini, A. Stefanel, Clicker per l’apprendimento attivo della Fisica degli studenti dell’area Bio, in Didamatica (2016). ISBN: 9788898091447. http://didamatica2016.uniud.it/proceedings/dati/articoli/paper_106.pdf

  • M. Michelini, A. Stefanel, Il contributo delle ICT per l’apprendimento scientifico, in Tecnologie per l’educazione, ed. by P.G. Rossi, P.C. Rivoltella, Cap. 20 (Pearson, London, 2019), pp. 273–290

    Google Scholar 

  • M. Michelini, R. Viola, V. Engstrom, Superconduttività: esperimenti e modelli, in Informatica per la didattica, ed. by A. Andronico et al. (parte I) (Laterza, Bari, 2008), pp. 110–114. ISBN: 978-88-8231-456-9

    Google Scholar 

  • M. Michelini, L. Santi, A. Stefanel, Thermal sensors interfaced with computer as extension of senses in kindergarten and primary school. Il Nuovo Cimento 33C, 3 (2010). https://doi.org/10.1393/ncc/i2010-10641-x

  • M. Michelini, L. Santi, A. Stefanel, Upper secondary students face optical diffraction using simple experiments and on-line measurements, in FFP14, ed. by E. Kajfasz, T. Masson, R. Triay (AMU, Marseille, 2014a). http://pos.sissa.it/archive/conferences/224/240/FFP14_240.pdf

  • M. Michelini, L. Santi, A. Stefanel, Teaching modern physics in secondary school, in FFP14, ed. by E. Kajfasz, T. Masson, R. Triay (AMU, Marseille, 2014b). http://pos.sissa.it/archive/conferences/224/231/FFP14_231.pdf

  • M. Michelini, L. Santi, A. Stefanel, JQM per affrontare nella scuola secondaria i fondamenti di MQ, in Didamatica (2016). ISBN: 9788898091447. http://didamatica2016.uniud.it/proceedings/dati/articoli/paper_96.pdf

  • R. Millar, I. Abrahams, Practical work: making it more effective. SSR 91(334), 60 (2009)

    Google Scholar 

  • M. Monteiro, C. Stari, C. Cabeza, A.C. Martí, The polarization of light and Malus’ law using smartphones. Phys. Teach. 55, 264 (2017). https://doi.org/10.1119/1.4981030

    Article  ADS  Google Scholar 

  • J.M. Ogborn, Dynamical modelling system, microcomputer software, in ICPE (IUPAP) Communicating Physics (Longmans, London, 1984), pp. 94–103

    Google Scholar 

  • J.M. Ogborn, New technologies and the classroom. Commun. Phys. ICPE (IUPAP) 94 (1986)

    Google Scholar 

  • Oprea, Arduino-based projects in physics education. eLearn. Softw. Educ. 2, 107–113 (2018)

    Google Scholar 

  • G. Planinsic, Experiments as building blocks of knowledge, in Research and Innovation in Physics Education, ed. by J. Guisasola, K. Zuza (Springer, Cham, 2020), pp. 1–13. https://doi.org/10.1007/978-3-030-51182-1_1

  • N.F. Podolefsky, K.K. Perkins, W.K. Adams, Factors promoting engaged exploration with computer simulations. Phys. Rev. Spec. Top. Phys. Educ. Res. 6, 020117 (2010)

    Article  ADS  Google Scholar 

  • S.J. Pollock, N.D. Finkelstein, Impacts of curricular change: implications from 8 years of data in introductory physics. AIP Conf. Proc. 1513, 310 (2013). https://doi.org/10.1063/1.4789714

    Article  ADS  Google Scholar 

  • C. Pontecorvo, A.M. Ajello, C. Zucchermaglio, I contesti sociali dell’apprendimento (LED, Milano, 1995)

    Google Scholar 

  • QPlayLearn Platform. Available online: http://www.qplaylearn.com/. Accessed 09 Oct 2022

  • D. Ratnikova, Sold-out crowd examines distance learning in physics. APS News 22(7) (2013)

    Google Scholar 

  • S. Richtberg, R. Girwidz, Learning physics with interactive videos—possibilities, perception, and challenges, in GIREP Congress 2018 (2018)

    Google Scholar 

  • M. Riel, Educational change in a technology-rich environment. J. Res. Comput. Educ. 26, 31–39 (1998)

    Google Scholar 

  • Y. Rodríguez et al., Physics education through computational tools: the case of geometrical and physical optics. Phys. Educ. 48, 621 (2013)

    Article  ADS  Google Scholar 

  • W.-M. Roth, Affordances of computers in teacher-student interactions: the case of interactive physics™. J. Res. Sci. Teach. 32(4) 329–347 (1995). https://doi.org/10.1002/tea.3660320404

  • L. Santi, E. Mazzega, M. Michelini, Understand radiation interference by means of computer modelling, in Light and Information, ed. by L.C. Pereira, J.A. Ferreira, H.A. Lopes (GIREP-Universidade do Minho, Braga, 1993), pp. 372–380

    Google Scholar 

  • L. Santi, S.P.R. Challapalli, G. Fera, M. Michelini, A. Stefanel, S. Vercellati, Clicker. La Fis. nella Scuola XLVII(S4), 78–85 (2014)

    Google Scholar 

  • E. Sassi, Computer supported lab-work in physics education: advantages and problems, in Physics Teacher Education Beyond 2000, ed. by R. Pintò, S. Surinach (Elsevier, Paris, 2001), pp. 57–64

    Google Scholar 

  • B. Sherwood, R. Chabay, VPythom: 3D programming for ordinary mortals. Il Nuovo Cimento 33C(3), 59–63 (2010)

    Google Scholar 

  • R. Simpson, R.K. Thornton, Computers bring new opportunity to science education. Comput. Phys. 9(6) (1995)

    Google Scholar 

  • C. Singh, Interactive learning tutorials on QM. Am. J. Phys. 76(4), 400–405 (2008)

    Article  ADS  Google Scholar 

  • G.W. Smith, S. Puntambekar, Examining the combination of physical and virtual experiments in an inquiry science classroom, in CBLIS 2010, ed. by C. Constantinou et al. (Oelizk, Warsaw, 2010), pp. 153–164

    Google Scholar 

  • D.R. Sokoloff, Active learning in lecture with interactive lecture demonstrations using microcomputer, in Proceedings of MPTL11, ed. by S. Divjak (MPTL, Ljubljana, 2011), pp. 27–34

    Google Scholar 

  • D.R. Sokoloff, Active learning of introductory light and optics. Phys. Teach. 54(1), 18–23 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • D.R. Sokoloff, Exploring multimedia to adapt ILDs for home use, in Physics Teacher Education—What Matters?, ed. by J. Borg et al. (Springer, Cham, 2022), pp. 3–14. https://doi.org/10.1007/978-3-031-06193-6_1

  • D.R. Sokoloff, R.K. Thornton, P. Laws, Realtime physics: active learning labs transforming the introductory lab. Eur. J. Phys. 28, S83–S94 (2007)

    Article  Google Scholar 

  • R.M. Sperandeo, M. Michelini, L. Santi, Proposte didattiche su forze e movimento (Forum, Udine, 2002). ISBN: 88-8420-075-X

    Google Scholar 

  • A. Stefanel, Il contributo della multimedialità all’apprendimento attivo della fisica in DAD, in Invited Talk, 107 Congress of the Italian Physical Society, Milan (2021), pp. 13–17

    Google Scholar 

  • A. Stefanel, C. Moschetta, M. Michelini, Cognitive labs in an informal context to develop formal thinking in children, in Developing Formal Thinking, ed. by M. Michelini, M. Cobal (Forum, Udine, 2002), pp. 276–283

    Google Scholar 

  • J.C. Stewart, Electricity and Magnetism Self-Testing and Test Construction Tool (2011). http://physinfo.uark.edu/physicsonline

  • D. Stoica et al., The interactive whiteboard and the instructional design in teaching physics. Procedia Soc. Behav. (2011)

    Google Scholar 

  • L. Strubbe, S. McKagan, I suddenly have to move my lab course online! What should I do? PhysPort—Expert Recommendation (2021). https://www.physport.org/recommendations/Entry.cfm?ID=119927

  • K. Swan, M. Miltrani, The changing nature of teaching and learning in computer-based classrooms. J. Res. Comput. Educ. 25, 121–127 (1998)

    Google Scholar 

  • V.D. Teodoro, Cognitive artefacts, technology and physics education. Interact. Educ. Multimed. 11, 173–189 (2005). http://www.ub.es/multimedia/iem

  • A. Theodorakakos, E. Hatzikraniotis, D. Psillos, “PEC task explorer”: a tool for ICT supported learning in science, in CBLIS 2010, ed. by C. Constantonou et al. (Oelizk, Warsaw, 2010), pp. 75–83

    Google Scholar 

  • L.-J. Thoms, R. Girwidz, Symposium: virtual and remote labs in practice, in GIREP Conference, S. Sebastian, 9–13 July 2018

    Google Scholar 

  • R.K. Thornton, D.R. Sokoloff, Learning motion concepts using real-time microcomputer-based laboratory tools. Am. J. Phys. 58, 858–867 (1990)

    Article  ADS  Google Scholar 

  • M.H. Tinker, R.J.A. Lambourne, S.A. Windsor, The flexible learning approach to physics (FLAP): a review after the first two years. Int. J. Sci. Educ. 21(2), 213–230 (1999). https://doi.org/10.1080/095006999290796

    Article  Google Scholar 

  • A.P. Titus, L.W. Martin, R.J. Beichner et al., Web-based testing in physics education. Comput. Phys. 12, 117 (1998). https://doi.org/10.1063/1.168628

    Article  ADS  Google Scholar 

  • E. van den Berg, A.L. Ellermeijer, O. Slooten (eds.), Modelling in Physics and Physics Education (University of Amsterdam, Amsterdam, 2008)

    Google Scholar 

  • E. van den Berg, F. Schweickert, R. van den Berg, Science, sensors and graphs in primary schools (2012). https://www.iederkindeentalent.nl/wp-content/uploads/2012/06/sciencesensors1.pdf

  • E. van Nieuwenburg, Quantum TiqTaqToe. Available online: https://quantumtictactoe.com/. Accessed 09 Oct 2022

  • M. Vendramini, M. Michelini, Sensori On-line nella scuola primaria per sviluppare il pensiero formale, in Nuovi metodi e saperi per formare all’innovazione, ed. by G. Adorni et al. (AICA-UniBO, Bologna, 2018), pp. 231–240

    Google Scholar 

  • F. Wang, M.J. Hannafin, Design-based research and technology-enhanced learning environments. Educ. Technol. Res. Dev. 53(4), 5–23 (2005)

    Article  Google Scholar 

  • H. Whitney, Development of active learning tools for a course on physics and music, in AAAPT 2011 (2011)

    Google Scholar 

  • C. Wieman, K. Perkins, Transforming physics education. Phys. Today 58(11), 36 (2005)

    Article  Google Scholar 

  • J. Wootton, The History of Games for Quantum Computers (2018). Available online: https://decodoku.com/. Accessed 09 Oct 2022

  • D.A. Zollman, N.S. Rebello, K. Hogg, QM for everyone: hands-on activities integrated with technology. Am. J. Phys. 70(3), 252–259 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Stefanel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Michelini, M., Stefanel, A. (2023). Research-Based Contribution on ICT as Learning Challenges in Physics Education. In: Streit-Bianchi, M., Michelini, M., Bonivento, W., Tuveri, M. (eds) New Challenges and Opportunities in Physics Education. Challenges in Physics Education. Springer, Cham. https://doi.org/10.1007/978-3-031-37387-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37387-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37386-2

  • Online ISBN: 978-3-031-37387-9

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics