Skip to main content

Hypertension and Dyslipidemia in Pediatric Obesity

  • Chapter
  • First Online:
Managing Pediatric Obesity Using Advanced Therapies

Abstract

Hypertension and dyslipidemia are common conditions in children that can increase cardiovascular risk. Overweight and obesity predispose children to developing hypertension and dyslipidemia. In this chapter, we will first focus on the epidemiology and etiology of hypertension and dyslipidemia in children. We will then discuss the clinical presentation and methods for diagnosing hypertension and dyslipidemia. Lastly, we will review the current management strategies for both conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol. 2020;16:223–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Song P, Zhang Y, Yu J, Zha M, Zhu Y, Rahimi K, Rudan I. Global prevalence of hypertension in children: a systematic review and meta-analysis. JAMA Pediatr. 2019;173:1154–63.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kontis V, Cobb LK, Mathers CD, Frieden TR, Ezzati M, Danaei G. Three public health interventions could save 94 million lives in 25 years. Circulation. 2019;140:715–25.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hardy ST, Sakhuja S, Jaeger BC, Urbina EM, Suglia SF, Feig DI, Muntner P. Trends in blood pressure and hypertension among US children and adolescents, 1999-2018. JAMA Netw Open. 2021;4:e213917.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bell CS, Samuel JP, Samuels JA. Prevalence of hypertension in children. Hypertension. 2019;73:148–52.

    Article  CAS  PubMed  Google Scholar 

  6. Khoury M, Khoury PR, Dolan LM, Kimball TR, Urbina EM. Clinical implications of the revised AAP pediatric hypertension guidelines. Pediatrics. 2018;142:e20180245.

    Article  PubMed  Google Scholar 

  7. Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, de Ferranti SD, Dionne JM, Falkner B, Flinn SK, Gidding SS, Goodwin C, Leu MG, Powers ME, Rea C, Samuels J, Simasek M, Thaker VV, Urbina EM, Subcommittee On S and Management of High Blood Pressure in C. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics. 2017;140:1–72.

    Article  Google Scholar 

  8. Urbina EM, Khoury PR, Bazzano L, Burns TL, Daniels S, Dwyer T, Hu T, Jacobs DR Jr, Juonala M, Prineas R, Raitakari O, Steinberger J, Venn A, Woo JG, Sinaiko A. Relation of blood pressure in childhood to self-reported hypertension in adulthood. Hypertension. 2019;73:1224–30.

    Article  CAS  PubMed  Google Scholar 

  9. Chen X, Wang Y. Tracking of blood pressure from childhood to adulthood: a systematic review and meta-regression analysis. Circulation. 2008;117:3171–80.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kelly RK, Thomson R, Smith KJ, Dwyer T, Venn A, Magnussen CG. Factors affecting tracking of blood pressure from childhood to adulthood: the childhood determinants of adult health study. J Pediatr. 2015;167:1422–8.e2.

    Article  PubMed  Google Scholar 

  11. Theodore RF, Broadbent J, Nagin D, Ambler A, Hogan S, Ramrakha S, Cutfield W, Williams MJ, Harrington H, Moffitt TE, Caspi A, Milne B, Poulton R. Childhood to early-midlife systolic blood pressure trajectories: early-life predictors, effect modifiers, and adult cardiovascular outcomes. Hypertension. 2015;66:1108–15.

    Article  CAS  PubMed  Google Scholar 

  12. Juhola J, Magnussen CG, Berenson GS, Venn A, Burns TL, Sabin MA, Srinivasan SR, Daniels SR, Davis PH, Chen W, Kähönen M, Taittonen L, Urbina E, Viikari JSA, Dwyer T, Raitakari OT, Juonala M. Combined effects of child and adult elevated blood pressure on subclinical atherosclerosis: the international childhood cardiovascular cohort consortium. Circulation. 2013;128:217–24.

    Article  PubMed  Google Scholar 

  13. Aatola H, Koivistoinen T, Tuominen H, Juonala M, Lehtimäki T, Viikari JSA, Raitakari OT, Kähönen M, Hutri-Kähönen N. Influence of child and adult elevated blood pressure on adult arterial stiffness: the cardiovascular risk in Young Finns study. Hypertension (Dallas, Tex: 1979). 2017;70:531–6.

    Article  CAS  PubMed  Google Scholar 

  14. Yan Y, Li S, Guo Y, Fernandez C, Bazzano L, He J, Mi J, Chen W. Life-course cumulative burden of body mass index and blood pressure on progression of left ventricular mass and geometry in midlife: the Bogalusa heart study. Circ Res. 2020;126:633–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rovio SP, Pahkala K, Nevalainen J, Juonala M, Salo P, Kähönen M, Hutri-Kähönen N, Lehtimäki T, Jokinen E, Laitinen T, Taittonen L, Tossavainen P, Viikari JSA, Rinne JO, Raitakari OT. Cardiovascular risk factors from childhood and midlife cognitive performance: the Young Finns study. J Am Coll Cardiol. 2017;69:2279–89.

    Article  PubMed  Google Scholar 

  16. Brown DW, Giles WH, Croft JB. Left ventricular hypertrophy as a predictor of coronary heart disease mortality and the effect of hypertension. Am Heart J. 2000;140:848–56.

    Article  CAS  PubMed  Google Scholar 

  17. Baldassarre D, Veglia F, Hamsten A, Humphries SE, Rauramaa R, de Faire U, Smit AJ, Giral P, Kurl S, Mannarino E, Grossi E, Paoletti R, Tremoli E and Group IS. Progression of carotid intima-media thickness as predictor of vascular events: results from the IMPROVE study. Arterioscler Thromb Vasc Biol. 2013;33:2273–9.

    Article  CAS  PubMed  Google Scholar 

  18. Kit BK, Kuklina E, Carroll MD, Ostchega Y, Freedman DS, Ogden CL. Prevalence of and trends in dyslipidemia and blood pressure among US children and adolescents, 1999-2012. JAMA Pediatr. 2015;169:272–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19·1 million participants. Lancet. 2017;389:37–55.

    Google Scholar 

  20. Singh GM, Danaei G, Pelizzari PM, Lin JK, Cowan MJ, Stevens GA, Farzadfar F, Khang YH, Lu Y, Riley LM, Lim SS, Ezzati M. The age associations of blood pressure, cholesterol, and glucose: analysis of health examination surveys from international populations. Circulation. 2012;125:2204–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dorans KS, Mills KT, Liu Y, He J. Trends in Prevalence and Control of Hypertension According to the 2017 American College of Cardiology/American Heart Association (ACC/AHA) guideline. J Am Heart Assoc. 2018;7:e008888.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB. Heart disease and stroke statistics - 2015 update: a report from the American Heart Association. Circulation. 2015;131:e29–322.

    PubMed  Google Scholar 

  23. Tu W, Eckert GJ, Hannon TS, Liu H, Pratt LM, Wagner MA, Dimeglio LA, Jung J, Pratt JH. Racial differences in sensitivity of blood pressure to aldosterone. Hypertension. 2014;63:1212–8.

    Article  CAS  PubMed  Google Scholar 

  24. Tu W, Li R, Bhalla V, Eckert GJ, Pratt JH. Age-related blood pressure sensitivity to aldosterone in blacks and whites. Hypertension. 2018;72:247–52.

    Article  CAS  PubMed  Google Scholar 

  25. Spence JD, Rayner BL. Hypertension in blacks: individualized therapy based on renin/aldosterone phenotyping. Hypertension. 2018;72:263–9.

    Article  CAS  PubMed  Google Scholar 

  26. Su S, Wang X, Pollock JS, Treiber FA, Xu X, Snieder H, McCall WV, Stefanek M, Harshfield GA. Adverse childhood experiences and blood pressure trajectories from childhood to young adulthood: the Georgia stress and heart study. Circulation. 2015;131:1674–81.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gupta-Malhotra M, Shete S, Barratt MS, Milewicz D, Hashmi SS. Epidemiology of childhood onset essential hypertension. J Hum Hypertens. 2018;32:808–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Skinner AC, Perrin EM, Moss LA, Skelton JA. Cardiometabolic risks and severity of obesity in children and young adults. N Engl J Med. 2015;373:1307–17.

    Article  PubMed  Google Scholar 

  29. Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, Yeckel CW, Allen K, Lopes M, Savoye M, Morrison J, Sherwin RS, Caprio S. Obesity and the metabolic syndrome in children and adolescents. N Engl J Med. 2004;350:2362–74.

    Article  CAS  PubMed  Google Scholar 

  30. Wallace AS, Wang D, Shin JI, Selvin E. Screening and diagnosis of prediabetes and diabetes in US children and adolescents. Pediatrics. 2020;146:e20200265.

    Article  PubMed  Google Scholar 

  31. Falkner B, DeLoach S, Keith SW, Gidding SS. High risk blood pressure and obesity increase the risk for left ventricular hypertrophy in African-American adolescents. J Pediatr. 2013;162:94–100.

    Article  PubMed  Google Scholar 

  32. Shah AS, Dolan LM, Khoury PR, Gao Z, Kimball TR, Urbina EM. Severe obesity in adolescents and Young adults is associated with subclinical cardiac and vascular changes. J Clin Endocrinol Metab. 2015;100:2751–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cote AT, Harris KC, Panagiotopoulos C, Sandor GG, Devlin AM. Childhood obesity and cardiovascular dysfunction. J Am Coll Cardiol. 2013;62:1309–19.

    Article  PubMed  Google Scholar 

  34. Flynn J, Zhang Y, Solar-Yohay S, Shi V. Clinical and demographic characteristics of children with hypertension. Hypertension. 2012;60:1047–54.

    Article  CAS  PubMed  Google Scholar 

  35. Baracco R, Kapur G, Mattoo T, Jain A, Valentini R, Ahmed M, Thomas R. Prediction of primary vs secondary hypertension in children. J Clin Hypertens (Greenwich). 2012;14:316–21.

    Article  PubMed  Google Scholar 

  36. Gomes RS, Quirino IG, Pereira RM, Vitor BM, Leite AF, Oliveira EA, Simões e Silva AC. Primary versus secondary hypertension in children followed up at an outpatient tertiary unit. Pediatr Nephrol. 2011;26:441–7.

    Article  PubMed  Google Scholar 

  37. Seeman T, Palyzova D, Dusek J, Janda J. Reduced nocturnal blood pressure dip and sustained nighttime hypertension are specific markers of secondary hypertension. J Pediatr. 2005;147:366–71.

    Article  PubMed  Google Scholar 

  38. Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res. 2015;116:991–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kotsis V, Jordan J, Micic D, Finer N, Leitner DR, Toplak H, Tokgozoglu L, Athyros V, Elisaf M, Filippatos TD, Redon J, Redon P, Antza C, Tsioufis K, Grassi G, Seravalle G, Coca A, Sierra C, Lurbe E, Stabouli S, Jelakovic B, Nilsson PM. Obesity and cardiovascular risk: a call for action from the European Society of Hypertension Working Group of Obesity, Diabetes and the High-risk Patient and European Association for the Study of Obesity: part A: mechanisms of obesity induced hypertension, diabetes and dyslipidemia and practice guidelines for treatment. J Hypertens. 2018;36:1427–40.

    Article  CAS  PubMed  Google Scholar 

  40. Kotsis V, Stabouli S, Papakatsika S, Rizos Z, Parati G. Mechanisms of obesity-induced hypertension. Hypertens Res. 2010;33:386–93.

    Article  PubMed  Google Scholar 

  41. Kaelber DC, Pickett F. Simple table to identify children and adolescents needing further evaluation of blood pressure. Pediatrics. 2009;123:e972–4.

    Article  PubMed  Google Scholar 

  42. Stergiou GS, Alamara CV, Salgami EV, Vaindirlis IN, Dacou-Voutetakis C, Mountokalakis TD. Reproducibility of home and ambulatory blood pressure in children and adolescents. Blood Press Monit. 2005;10:143–7.

    Article  PubMed  Google Scholar 

  43. Li Z, Snieder H, Harshfield GA, Treiber FA, Wang X. A 15-year longitudinal study on ambulatory blood pressure tracking from childhood to early adulthood. Hypertens Res. 2009;32:404–10.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Richey PA, Disessa TG, Hastings MC, Somes GW, Alpert BS, Jones DP. Ambulatory blood pressure and increased left ventricular mass in children at risk for hypertension. J Pediatr. 2008;152:343–8.

    Article  PubMed  Google Scholar 

  45. Sorof JM, Cardwell G, Franco K, Portman RJ. Ambulatory blood pressure and left ventricular mass index in hypertensive children. Hypertension. 2002;39:903–8.

    Article  CAS  PubMed  Google Scholar 

  46. Stergiou GS, Giovas PP, Kollias A, Rarra VC, Papagiannis J, Georgakopoulos D, Vazeou A. Relationship of home blood pressure with target-organ damage in children and adolescents. Hypertens Res. 2011;34:640–4.

    Article  PubMed  Google Scholar 

  47. Kavey RE, Kveselis DA, Atallah N, Smith FC. White coat hypertension in childhood: evidence for end-organ effect. J Pediatr. 2007;150:491–7.

    Article  PubMed  Google Scholar 

  48. Swartz SJ, Srivaths PR, Croix B, Feig DI. Cost-effectiveness of ambulatory blood pressure monitoring in the initial evaluation of hypertension in children. Pediatrics. 2008;122:1177–81.

    Article  PubMed  Google Scholar 

  49. Lurbe E, Invitti C, Torro I, Maronati A, Aguilar F, Sartorio A, Redon J, Parati G. The impact of the degree of obesity on the discrepancies between office and ambulatory blood pressure values in youth. J Hypertens. 2006;24:1557–64.

    Article  CAS  PubMed  Google Scholar 

  50. So HK, Yip GW, Choi KC, Li AM, Leung LC, Wong SN, Sung RY. Association between waist circumference and childhood-masked hypertension: a community-based study. J Paediatr Child Health. 2016;52:385–90.

    Article  PubMed  Google Scholar 

  51. Török K, Pálfi A, Szelényi Z, Molnár D. Circadian variability of blood pressure in obese children. Nutr Metab Cardiovasc Dis. 2008;18:429–35.

    Article  PubMed  Google Scholar 

  52. Aguilar A, Ostrow V, De Luca F, Suarez E. Elevated ambulatory blood pressure in a multi-ethnic population of obese children and adolescents. J Pediatr. 2010;156:930–5.

    Article  PubMed  Google Scholar 

  53. Canniffe C, Ou P, Walsh K, Bonnet D, Celermajer D. Hypertension after repair of aortic coarctation--a systematic review. Int J Cardiol. 2013;167:2456–61.

    Article  PubMed  Google Scholar 

  54. Hager A, Kanz S, Kaemmerer H, Schreiber C, Hess J. Coarctation long-term assessment (COALA): significance of arterial hypertension in a cohort of 404 patients up to 27 years after surgical repair of isolated coarctation of the aorta, even in the absence of restenosis and prosthetic material. J Thorac Cardiovasc Surg. 2007;134:738–45.

    Article  PubMed  Google Scholar 

  55. Marwick TH, Gillebert TC, Aurigemma G, Chirinos J, Derumeaux G, Galderisi M, Gottdiener J, Haluska B, Ofili E, Segers P, Senior R, Tapp RJ, Zamorano JL. Recommendations on the use of echocardiography in adult hypertension: a report from the European Association of Cardiovascular Imaging (EACVI) and the American Society of Echocardiography (ASE). J Am Soc Echocardiogr. 2015;28:727–54.

    Article  PubMed  Google Scholar 

  56. Armstrong AC, Gidding S, Gjesdal O, Wu C, Bluemke DA, Lima JA. LV mass assessed by echocardiography and CMR, cardiovascular outcomes, and medical practice. JACC Cardiovasc Imaging. 2012;5:837–48.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ, Chamber Quantification Writing G, American Society of Echocardiography’s G, Standards C and European Association of E. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18:1440–63.

    Article  PubMed  Google Scholar 

  58. Urbina EM, Mendizábal B, Becker RC, Daniels SR, Falkner BE, Hamdani G, Hanevold C, Hooper SR, Ingelfinger JR, Lanade M, Martin LJ, Meyers K, Mitsnefes M, Rosner B, Samuels J, Flynn JT. Association of blood pressure level with left ventricular mass in adolescents. Hypertension. 2019;74:590–6.

    Article  CAS  PubMed  Google Scholar 

  59. Khoury PR, Mitsnefes M, Daniels SR, Kimball TR. Age-specific reference intervals for indexed left ventricular mass in children. J Am Soc Echocardiogr. 2009;22:709–14.

    Article  PubMed  Google Scholar 

  60. Foster BJ, Khoury PR, Kimball TR, Mackie AS, Mitsnefes M. New reference centiles for left ventricular mass relative to lean body mass in children. J Am Soc Echocardiogr. 2016;29:441–447.e2.

    Article  PubMed  Google Scholar 

  61. Archbold KH, Vasquez MM, Goodwin JL, Quan SF. Effects of sleep patterns and obesity on increases in blood pressure in a 5-year period: report from the Tucson Children’s assessment of sleep apnea study. J Pediatr. 2012;161:26–30.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Javaheri S, Storfer-Isser A, Rosen CL, Redline S. Sleep quality and elevated blood pressure in adolescents. Circulation. 2008;118:1034–40.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Marcus CL, Brooks LJ, Draper KA, Gozal D, Halbower AC, Jones J, Schechter MS, Ward SD, Sheldon SH, Shiffman RN, Lehmann C, Spruyt K. Diagnosis and management of childhood obstructive sleep apnea syndrome. Pediatrics. 2012;130:e714–55.

    Article  PubMed  Google Scholar 

  64. Flynn JT, Urbina EM, Brady TM, Baker-Smith C, Daniels SR, Hayman LL, Mitsnefes M, Tran A, Zachariah JP. Ambulatory blood pressure monitoring in children and adolescents: 2022 update: a scientific statement from the American Heart Association. Hypertension. 2022;79:e114–24.

    Article  CAS  PubMed  Google Scholar 

  65. Adler AJ, Taylor F, Martin N, Gottlieb S, Taylor RS, Ebrahim S. Reduced dietary salt for the prevention of cardiovascular disease. Cochrane Database Syst Rev. 2014;2014:Cd009217.

    PubMed  PubMed Central  Google Scholar 

  66. Paula Bricarello L, Poltronieri F, Fernandes R, Retondario A, de Moraes Trindade EBS, de Vasconcelos FAG. Effects of the dietary approach to stop hypertension (DASH) diet on blood pressure, overweight and obesity in adolescents: a systematic review. Clin Nutr ESPEN. 2018;28:1–11.

    Article  PubMed  Google Scholar 

  67. Couch SC, Saelens BE, Khoury PR, Dart KB, Hinn K, Mitsnefes MM, Daniels SR, Urbina EM. Dietary approaches to stop hypertension dietary intervention improves blood pressure and vascular health in youth with elevated blood pressure. Hypertension. 2021;77:241–51.

    Article  CAS  PubMed  Google Scholar 

  68. He FJ, Tan M, Ma Y, MacGregor GA. Salt reduction to prevent hypertension and cardiovascular disease: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75:632–47.

    Article  CAS  PubMed  Google Scholar 

  69. Yang Q, Zhang Z, Kuklina EV, Fang J, Ayala C, Hong Y, Loustalot F, Dai S, Gunn JP, Tian N, Cogswell ME, Merritt R. Sodium intake and blood pressure among US children and adolescents. Pediatrics. 2012;130:611–9.

    Article  PubMed  Google Scholar 

  70. Torrance B, McGuire KA, Lewanczuk R, McGavock J. Overweight, physical activity and high blood pressure in children: a review of the literature. Vasc Health Risk Manag. 2007;3:139–49.

    PubMed  PubMed Central  Google Scholar 

  71. Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, Galuska DA, George SM, Olson RD. The physical activity guidelines for Americans. JAMA. 2018;320:2020–8.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Burrello J, Erhardt EM, Saint-Hilary G, Veglio F, Rabbia F, Mulatero P, Monticone S, D’Ascenzo F. Pharmacological treatment of arterial hypertension in children and adolescents: a network meta-analysis. Hypertension. 2018;72:306–13.

    Article  CAS  PubMed  Google Scholar 

  73. Samuel JP, Tyson JE, Green C, Bell CS, Pedroza C, Molony D, Samuels J. Treating hypertension in children with n-of-1 trials. Pediatrics. 2019;143:e20181818.

    Article  PubMed  Google Scholar 

  74. Wiysonge CS, Bradley HA, Volmink J, Mayosi BM, Opie LH. Beta-blockers for hypertension. Cochrane Database Syst Rev. 2017;1:CD002003.

    PubMed  Google Scholar 

  75. Perak AM, Ning H, Kit BK, de Ferranti SD, Van Horn LV, Wilkins JT, Lloyd-Jones DM. Trends in levels of lipids and apolipoprotein B in US youths aged 6 to 19 years, 1999-2016. JAMA. 2019;321:1895–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Centers for Disease C and Prevention. Prevalence of abnormal lipid levels among youths - United States, 1999–2006. MMWR Morb Mortal Wkly Rep. 2010;59:29–33.

    Google Scholar 

  77. Kit BK, Carroll MD, Lacher DA, Sorlie PD, DeJesus JM, Ogden C. Trends in serum lipids among US youths aged 6 to 19 years, 1988-2010. JAMA. 2012;308:591–600.

    Article  CAS  PubMed  Google Scholar 

  78. Magnussen CG, Raitakari OT, Thomson R, Juonala M, Patel DA, Viikari JS, Marniemi J, Srinivasan SR, Berenson GS, Dwyer T, Venn A. Utility of currently recommended pediatric dyslipidemia classifications in predicting dyslipidemia in adulthood: evidence from the childhood determinants of adult health (CDAH) study, cardiovascular risk in Young Finns study, and Bogalusa heart study. Circulation. 2008;117:32–42.

    Article  PubMed  Google Scholar 

  79. Bao W, Srinivasan SR, Wattigney WA, Bao W, Berenson GS. Usefulness of childhood low-density lipoprotein cholesterol level in predicting adult dyslipidemia and other cardiovascular risks. The Bogalusa Heart Study. Arch Intern Med. 1996;156:1315–20.

    Article  CAS  PubMed  Google Scholar 

  80. Srinivasan SR, Frontini MG, Xu J, Berenson GS. Utility of childhood non-high-density lipoprotein cholesterol levels in predicting adult dyslipidemia and other cardiovascular risks: the Bogalusa Heart Study. Pediatrics. 2006;118:201–6.

    Article  PubMed  Google Scholar 

  81. Jacobs DR Jr, Woo JG, Sinaiko AR, Daniels SR, Ikonen J, Juonala M, Kartiosuo N, Lehtimäki T, Magnussen CG, Viikari JSA, Zhang N, Bazzano LA, Burns TL, Prineas RJ, Steinberger J, Urbina EM, Venn AJ, Raitakari OT, Dwyer T. Childhood cardiovascular risk factors and adult cardiovascular events. N Engl J Med. 2022;386:1877–88.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Welty FK. Hypobetalipoproteinemia and abetalipoproteinemia: liver disease and cardiovascular disease. Curr Opin Lipidol. 2020;31:49–55.

    Article  CAS  PubMed  Google Scholar 

  83. Dron JS, Hegele RA. Genetics of hypertriglyceridemia. Front Endocrinol (Lausanne). 2020;11:455.

    Article  PubMed  Google Scholar 

  84. Shah AS, Wilson DP. Primary hypertriglyceridemia in children and adolescents. J Clin Lipidol. 2015;9:S20–8.

    Article  PubMed  Google Scholar 

  85. Expert Panel on Integrated Guidelines for Cardiovascular H, Risk Reduction in C, Adolescents, National Heart L and Blood I. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011;128(Suppl 5):S213–56.

    Google Scholar 

  86. de Ferranti SD, Rodday AM, Mendelson MM, Wong JB, Leslie LK, Sheldrick RC. Prevalence of familial hypercholesterolemia in the 1999 to 2012 United States National Health and nutrition examination surveys (NHANES). Circulation. 2016;133:1067–72.

    Article  PubMed  Google Scholar 

  87. Mortality in treated heterozygous familial hypercholesterolaemia: implications for clinical management. Scientific Steering Committee on behalf of the Simon Broome Register Group. Atherosclerosis. 1999;142:105–12.

    Google Scholar 

  88. Langslet G, Bogsrud MP, Halvorsen I, Fjeldstad H, Retterstol K, Veierod MB, Ose L. Long-term follow-up of young adults with familial hypercholesterolemia after participation in clinical trials during childhood. J Clin Lipidol. 2015;9:778–85.

    Article  PubMed  Google Scholar 

  89. Perak AM, Ning H, de Ferranti SD, Gooding HC, Wilkins JT, Lloyd-Jones DM. Long-term risk of atherosclerotic cardiovascular Disease in US adults with the familial hypercholesterolemia phenotype. Circulation. 2016;134:9–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Neil A, Cooper J, Betteridge J, Capps N, McDowell I, Durrington P, Seed M, Humphries SE. Reductions in all-cause, cancer, and coronary mortality in statin-treated patients with heterozygous familial hypercholesterolaemia: a prospective registry study. Eur Heart J. 2008;29:2625–33.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Urbina EM, de Ferranti SD. Lipid screening in children and adolescents. JAMA. 2016;316:589–91.

    Article  PubMed  Google Scholar 

  92. de Ferranti SD, Rodday AM, Parsons SK, Cull WL, O’Connor KG, Daniels SR, Leslie LK. Cholesterol screening and treatment practices and preferences: a survey of United States pediatricians. J Pediatr. 2017;185:99–105.e2.

    Article  PubMed  Google Scholar 

  93. Schmitz SA, O’Regan DP, Fitzpatrick J, Neuwirth C, Potter E, Tosi I, Hajnal JV, Naoumova RP. Quantitative 3T MR imaging of the descending thoracic aorta: patients with familial hypercholesterolemia have an increased aortic plaque burden despite long-term lipid-lowering therapy. J Vasc Interv Radiol. 2008;19:1403–8.

    Article  PubMed  Google Scholar 

  94. Mohrschladt MF, Westendorp RG, Gevers Leuven JA, Smelt AH. Cardiovascular disease and mortality in statin-treated patients with familial hypercholesterolemia. Atherosclerosis. 2004;172:329–35.

    Article  CAS  PubMed  Google Scholar 

  95. Taghizadeh E, Mardani R, Rostami D, Taghizadeh H, Bazireh H, Hayat SMG. Molecular mechanisms, prevalence, and molecular methods for familial combined hyperlipidemia disease: a review. J Cell Biochem. 2019;120:8891–8.

    Article  CAS  PubMed  Google Scholar 

  96. Brouwers MC, van Greevenbroek MM, Stehouwer CD, de Graaf J, Stalenhoef AF. The genetics of familial combined hyperlipidaemia. Nat Rev Endocrinol. 2012;8:352–62.

    Article  CAS  PubMed  Google Scholar 

  97. Gill PK, Hegele RA. Familial combined hyperlipidemia is a polygenic trait. Curr Opin Lipidol. 2022;33:126–32.

    Article  CAS  PubMed  Google Scholar 

  98. Trinder M, Vikulova D, Pimstone S, Mancini GBJ, Brunham LR. Polygenic architecture and cardiovascular risk of familial combined hyperlipidemia. Atherosclerosis. 2022;340:35–43.

    Article  CAS  PubMed  Google Scholar 

  99. Vikulova DN, Trinder M, Mancini GBJ, Pimstone SN, Brunham LR. Familial hypercholesterolemia, familial combined hyperlipidemia, and elevated lipoprotein(a) in patients with premature coronary artery Disease. Can J Cardiol. 2021;37:1733–42.

    Article  PubMed  Google Scholar 

  100. Vekic J, Zeljkovic A, Stefanovic A, Jelic-Ivanovic Z, Spasojevic-Kalimanovska V. Obesity and dyslipidemia. Metabolism. 2019;92:71–81.

    Article  CAS  PubMed  Google Scholar 

  101. Klop B, Elte JW, Cabezas MC. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients. 2013;5:1218–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Clemente-Postigo M, Queipo-Ortuño MI, Fernandez-Garcia D, Gomez-Huelgas R, Tinahones FJ, Cardona F. Adipose tissue gene expression of factors related to lipid processing in obesity. PLoS One. 2011;6:e24783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bays HE, Toth PP, Kris-Etherton PM, Abate N, Aronne LJ, Brown WV, Gonzalez-Campoy JM, Jones SR, Kumar R, La Forge R, Samuel VT. Obesity, adiposity, and dyslipidemia: a consensus statement from the National Lipid Association. J Clin Lipidol. 2013;7:304–83.

    Article  PubMed  Google Scholar 

  104. Deeb SS, Zambon A, Carr MC, Ayyobi AF, Brunzell JD. Hepatic lipase and dyslipidemia: interactions among genetic variants, obesity, gender, and diet. J Lipid Res. 2003;44:1279–86.

    Article  CAS  PubMed  Google Scholar 

  105. Gidding SS, Champagne MA, de Ferranti SD, Defesche J, Ito MK, Knowles JW, McCrindle B, Raal F, Rader D, Santos RD, Lopes-Virella M, Watts GF, Wierzbicki AS, American Heart Association Atherosclerosis H, Obesity in Young Committee of Council on Cardiovascular Disease in Young CoC, Stroke Nursing CoFG, Translational B, Council on L and Cardiometabolic H. The agenda for familial hypercholesterolemia: a scientific statement from the American Heart Association. Circulation. 2015;132:2167–92.

    Article  PubMed  Google Scholar 

  106. Jacobson TA, Maki KC, Orringer CE, Jones PH, Kris-Etherton P, Sikand G, La Forge R, Daniels SR, Wilson DP, Morris PB, Wild RA, Grundy SM, Daviglus M, Ferdinand KC, Vijayaraghavan K, Deedwania PC, Aberg JA, Liao KP, McKenney JM, Ross JL, Braun LT, Ito MK, Bays HE, Brown WV, Underberg JA. National lipid association recommendations for patient-centered management of dyslipidemia: part 2. J Clin Lipidol. 2015;9:S1–122.e1.

    Article  PubMed  Google Scholar 

  107. Naughton MJ, Luepker RV, Strickland D. The accuracy of portable cholesterol analyzers in public screening programs. JAMA. 1990;263:1213–7.

    Article  CAS  PubMed  Google Scholar 

  108. Plüddemann A, Thompson M, Price CP, Wolstenholme J, Heneghan C. Point-of-care testing for the analysis of lipid panels: primary care diagnostic technology update. Br J Gen Pract. 2012;62:e224–6.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Bastianelli K, Ledin S, Chen J. Comparing the accuracy of 2 point-of-care lipid testing devices. J Pharm Pract. 2017;30:490–7.

    Article  PubMed  Google Scholar 

  110. Reyes-Soffer G, Ginsberg HN, Berglund L, Duell PB, Heffron SP, Kamstrup PR, Lloyd-Jones DM, Marcovina SM, Yeang C, Koschinsky ML. Lipoprotein(a): a genetically determined, causal, and prevalent risk factor for atherosclerotic cardiovascular Disease: a scientific statement from the American Heart Association. Arterioscler Thromb Vasc Biol. 2022;42:e48–60.

    Article  CAS  PubMed  Google Scholar 

  111. Kumar P, Swarnkar P, Misra S, Nath M. Lipoprotein (a) level as a risk factor for stroke and its subtype: a systematic review and meta-analysis. Sci Rep. 2021;11:15660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kamstrup PR, Benn M, Tybjaerg-Hansen A, Nordestgaard BG. Extreme lipoprotein(a) levels and risk of myocardial infarction in the general population: the Copenhagen City heart study. Circulation. 2008;117:176–84.

    Article  CAS  PubMed  Google Scholar 

  113. Vuorio A, Watts GF, Kovanen PT. Lipoprotein(a) as a risk factor for calcific aortic valvulopathy in heterozygous familial hypercholesterolemia. Atherosclerosis. 2019;281:25–30.

    Article  CAS  PubMed  Google Scholar 

  114. Wilson DP, Jacobson TA, Jones PH, Koschinsky ML, CJ MN, Nordestgaard BG and Orringer CE. Use of lipoprotein(a) in clinical practice: a biomarker whose time has come. A scientific statement from the National Lipid Association. J Clin Lipidol. 2019; https://doi.org/10.1016/j.jacl.2019.04.010. Don P. Wilson, MD, on behalf of the Writing group

  115. Wiegman A, Hutten BA, de Groot E, Rodenburg J, Bakker HD, Büller HR, Sijbrands EJG, Kastelein JJP. Efficacy and safety of statin therapy in children with familial hypercholesterolemia: a randomized controlled trial. JAMA. 2004;292:331–7.

    Article  CAS  PubMed  Google Scholar 

  116. Luirink IK, Wiegman A, Kusters DM, Hof MH, Groothoff JW, de Groot E, Kastelein JJP, Hutten BA. 20-year follow-up of statins in children with familial hypercholesterolemia. N Engl J Med. 2019;381:1547–56.

    Article  CAS  PubMed  Google Scholar 

  117. Desai NK, Mendelson MM, Baker A, Ryan HH, Griggs S, Boghani M, Yellen E, Buckley L, Gillman MW, Zachariah JP, Graham D, Jonas MM, de Ferranti SD. Hepatotoxicity of statins as determined by serum alanine aminotransferase in a pediatric cohort with dyslipidemia. J Pediatr Gastroenterol Nutr. 2019;68:175–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, Himmelfarb CD, Khera A, Lloyd-Jones D, McEvoy JW, Michos ED, Miedema MD, Munoz D, Smith SC Jr, Virani SS, Williams KA Sr, Yeboah J, Ziaeian B. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J Am Coll Cardiol. 2019;74:e177–232.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Mach F, Ray KK, Wiklund O, Corsini A, Catapano AL, Bruckert E, De Backer G, Hegele RA, Hovingh GK, Jacobson TA, Krauss RM, Laufs U, Leiter LA, März W, Nordestgaard BG, Raal FJ, Roden M, Santos RD, Stein EA, Stroes ES, Thompson PD, Tokgözoglu L, Vladutiu GD, Gencer B, Stock JK, Ginsberg HN, Chapman MJ. Adverse effects of statin therapy: perception vs. the evidence - focus on glucose homeostasis, cognitive, renal and hepatic function, haemorrhagic stroke and cataract. Eur Heart J. 2018;39:2526–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Samaras K, Makkar SR, Crawford JD, Kochan NA, Slavin MJ, Wen W, Trollor JN, Brodaty H, Sachdev PS. Effects of statins on memory, cognition, and brain volume in the elderly. J Am Coll Cardiol. 2019;74:2554–68.

    Article  CAS  PubMed  Google Scholar 

  121. The lipid research clinics coronary primary prevention trial results. I. Reduction in incidence of coronary heart disease. JAMA. 1984;251:351–64.

    Google Scholar 

  122. Tonstad S, Knudtzon J, Sivertsen M, Refsum H, Ose L. Efficacy and safety of cholestyramine therapy in peripubertal and prepubertal children with familial hypercholesterolemia. J Pediatr. 1996;129:42–9.

    Article  CAS  PubMed  Google Scholar 

  123. Liacouras CA, Coates PM, Gallagher PR, Cortner JA. Use of cholestyramine in the treatment of children with familial combined hyperlipidemia. J Pediatr. 1993;122:477–82.

    Article  CAS  PubMed  Google Scholar 

  124. Baigent C, Landray MJ, Reith C, Emberson J, Wheeler DC, Tomson C, Wanner C, Krane V, Cass A, Craig J, Neal B, Jiang L, Hooi LS, Levin A, Agodoa L, Gaziano M, Kasiske B, Walker R, Massy ZA, Feldt-Rasmussen B, Krairittichai U, Ophascharoensuk V, Fellström B, Holdaas H, Tesar V, Wiecek A, Grobbee D, de Zeeuw D, Grönhagen-Riska C, Dasgupta T, Lewis D, Herrington W, Mafham M, Majoni W, Wallendszus K, Grimm R, Pedersen T, Tobert J, Armitage J, Baxter A, Bray C, Chen Y, Chen Z, Hill M, Knott C, Parish S, Simpson D, Sleight P, Young A, Collins R. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (study of heart and renal protection): a randomised placebo-controlled trial. Lancet. 2011;377:2181–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, Darius H, Lewis BS, Ophuis TO, Jukema JW, De Ferrari GM, Ruzyllo W, De Lucca P, Im K, Bohula EA, Reist C, Wiviott SD, Tershakovec AM, Musliner TA, Braunwald E, Califf RM. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372:2387–97.

    Article  CAS  PubMed  Google Scholar 

  126. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, Braun LT, de Ferranti S, Faiella-Tommasino J, Forman DE, Goldberg R, Heidenreich PA, Hlatky MA, Jones DW, Lloyd-Jones D, Lopez-Pajares N, Ndumele CE, Orringer CE, Peralta CA, Saseen JJ, Smith SC Jr, Sperling L, Virani SS, Yeboah J. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the Management of Blood Cholesterol. Circulation. 2018;73:e285–350. CIR0000000000000625

    Google Scholar 

  127. Daniels S, Caprio S, Chaudhari U, Manvelian G, Baccara-Dinet MT, Brunet A, Scemama M, Loizeau V, Bruckert E. PCSK9 inhibition with alirocumab in pediatric patients with heterozygous familial hypercholesterolemia: the ODYSSEY KIDS study. J Clin Lipidol. 2020;14:322–330.e5.

    Article  PubMed  Google Scholar 

  128. Santos RD, Ruzza A, Hovingh GK, Wiegman A, Mach F, Kurtz CE, Hamer A, Bridges I, Bartuli A, Bergeron J, Szamosi T, Santra S, Stefanutti C, Descamps OS, Greber-Platzer S, Luirink I, Kastelein JJP, Gaudet D. Evolocumab in pediatric heterozygous familial hypercholesterolemia. N Engl J Med. 2020;383:1317–27.

    Article  CAS  PubMed  Google Scholar 

  129. Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Blom DJ, Robinson J, Ballantyne CM, Somaratne R, Legg J, Wasserman SM, Scott R, Koren MJ, Stein EA. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1500–9.

    Article  CAS  PubMed  Google Scholar 

  130. Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, Kuder JF, Wang H, Liu T, Wasserman SM, Sever PS, Pedersen TR, Committee FS, Investigators. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376:1713–22.

    Article  CAS  PubMed  Google Scholar 

  131. Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, Doyle RT Jr, Juliano RA, Jiao L, Granowitz C, Tardif JC, Ballantyne CM. Cardiovascular risk reduction with Icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019;380:11–22.

    Article  CAS  PubMed  Google Scholar 

  132. Frick MH, Elo O, Haapa K, Heinonen OP, Heinsalmi P, Helo P, Huttunen JK, Kaitaniemi P, Koskinen P, Manninen V, et al. Helsinki heart study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med. 1987;317:1237–45.

    Article  CAS  PubMed  Google Scholar 

  133. Ginsberg HN, Elam MB, Lovato LC, Crouse JR 3rd, Leiter LA, Linz P, Friedewald WT, Buse JB, Gerstein HC, Probstfield J, Grimm RH, Ismail-Beigi F, Bigger JT, Goff DC Jr, Cushman WC, Simons-Morton DG, Byington RP. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362:1563–74.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew H. Tran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tran, A.H., Urbina, E.M. (2023). Hypertension and Dyslipidemia in Pediatric Obesity. In: Fox, C.K. (eds) Managing Pediatric Obesity Using Advanced Therapies. Springer, Cham. https://doi.org/10.1007/978-3-031-37380-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37380-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37379-4

  • Online ISBN: 978-3-031-37380-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics