Skip to main content

Sustainable Approaches for Non-apparel Textile Products Used in Sports

  • Chapter
  • First Online:
Novel Sustainable Raw Material Alternatives for the Textiles and Fashion Industry

Abstract

Sustainability is the highly demanded practice for continued success in the manufacturing and consumption of different products. In order to reduce the carbon footprint and the energy demands, manufacturers are turning to sustainable approaches in their products. Major brands, already, have turned to sustainable approaches and practices in their manufacturing processes and products either by increasing the life cycle of the product or by reusing the recycled products. Sports textile is one of the major areas of technical textiles where textile materials are used in artificial turfs, sports rackets, balls, shoes, and many more products related to sports and games, besides sportswear. Reused and recycled materials are extensively promoted and used in various sports related products. In this chapter, approaches and methods used to introduce/improve the sustainability of the products are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.G. Bergevin, Surface for sports and other uses, US Patent No. 5489317, Feb 1996

    Google Scholar 

  2. J.G. Bergevin, Surface for sports and other uses, United States Patent No. 5850708, 1998

    Google Scholar 

  3. J.G. Bergevin, Sports playing surfaces with biodegradable backings, United States Patent No. 6145248, 2000

    Google Scholar 

  4. F.K. Fuss, A. Subic, R. Mehta, Sport and the technological and financial arms race: Back to the grass-roots. Sports Technol. 3(1), 1–1 (2010). https://doi.org/10.1080/19346182.2010.511007

    Article  Google Scholar 

  5. D. Ted, D. Joe, Synthetic turf system and method, United States Patent No. 7357966, 2008

    Google Scholar 

  6. J.E. Motz, Stabilized natural turf for athletic field, United States Patent No. 6029397, 2000

    Google Scholar 

  7. H.J. Friedrich, Artificial lawn, United States Patent No. 4007307, 1977

    Google Scholar 

  8. H. Cheng, Y. Hu, M. Reinhard, Environmental and health impacts of artificial turf: A review. Environ. Sci. Technol. 48(4), 2114–2129 (2014). https://doi.org/10.1021/es4044193

    Article  CAS  Google Scholar 

  9. D.M. Twomey, L.A. Petrass, P. Fleming, K. Lenehan, Abrasion injuries on artificial turf: A systematic review. J. Sci. Med. Sport 22(5), 550–556 (2019). https://doi.org/10.1016/j.jsams.2018.11.005

    Article  Google Scholar 

  10. J.W. Hacker, Wear tolerance in amenity and sports turf: A review 1980–85. Acta Hortic. 195, 35–42 (1987). https://doi.org/10.17660/ActaHortic.1987.195.4

    Article  Google Scholar 

  11. L.M. Smith, An Introduction to Bluegrass. J. Am. Folk. 78(309), 245 (1965). https://doi.org/10.2307/538358

    Article  Google Scholar 

  12. P.W. Wilkins, Breeding perennial ryegrass for agriculture. Euphytica 52(3), 201–214 (1991). https://doi.org/10.1007/BF00029397

    Article  Google Scholar 

  13. J. Tisdall, J. Oades, Stabilization of soil aggregates by the root systems of ryegrass. Soil Res. 17(3), 429 (1979). https://doi.org/10.1071/SR9790429

    Article  Google Scholar 

  14. D.M. Kopec, R.C. Shearman, T.P. Riordan, Evapotranspiration of tall fescue turf. HortScience 23(2), 300–301 (1988). https://doi.org/10.21273/HORTSCI.23.2.300

    Article  Google Scholar 

  15. R.N. Carrow, R.R. Duncan, Improving drought resistance and persistence in turf-type tall fescue. Crop Sci. 43(3), 978–984 (2003). https://doi.org/10.2135/cropsci2003.9780

    Article  Google Scholar 

  16. P.J. Carr, D.L. Collett, W.L. Schomburg, Synthetic covering systems for safety areas of airports, 7,175,362, 2007

    Google Scholar 

  17. K.K. Haugen, K.P. Heen, Artificial grass and genuine football: The evolution of artificial turf. Math. Appl. 8(1), 27–35 (2019). https://doi.org/10.13164/ma.2019.03

    Article  Google Scholar 

  18. T.J. Reynolds, J.C. Olson, Understanding Consumer Decision Making: The Means-End Approach to Marketing and Advertising Strategy (Psychology Press, 2001)

    Google Scholar 

  19. J. Prevost, Line system for playing field, United States Patent No. 6048282, 2000

    Google Scholar 

  20. P.J. Carr, D.L. Collett, W.L. Schomburg, T.M. Sullivan, Artificial turf airport marking safety system, United States Patent No. 6794007, 2004

    Google Scholar 

  21. J. Prevost, Synthetic grass sport surfaces, United States Patent No 6767595, 2004

    Google Scholar 

  22. M.A. Egan, Transportable turf grasses and grass sports surfaces having porous foundations, United States Patent No. 6694670, 2004

    Google Scholar 

  23. C. Cook, Method for assembling a modular sports field, United States Patent No. 7155796, 2007

    Google Scholar 

  24. J. Knox, Synthetic sports turf having improved playability and wearability, United States Patent No. 7758281, 2010

    Google Scholar 

  25. F. Stroppiana, Synthetic-grass flooring and method for laying same, United States PatentNo 7585555, 2009

    Google Scholar 

  26. J. Knox, Synthetic sports turf having improved playability and wearability, United States Patent No. 7189445, 2007

    Google Scholar 

  27. S.A. Tomarin, Synthetic grass playing field surface, United States Patent No 4637942, 1987

    Google Scholar 

  28. J.N. Rogers, Method for reducing abrasion of turfgrass on activity fields, United States Patent No. 5622002, 1997

    Google Scholar 

  29. J.M. Jones, Composite artificial turf structure with shock absorption and drainage, United States Patent No 6221445, 2001

    Google Scholar 

  30. R. Van, Sports floor and method for constructing such a sports floor, United States Patent No 7563052, 2009

    Google Scholar 

  31. J.R. Jastifer et al., Synthetic turf: History, design, maintenance, and athlete safety. Sports Health 11(1), 84–90 (2019). https://doi.org/10.1177/1941738118793378

    Article  Google Scholar 

  32. I.M. Levy, M.L. Skovron, J. Agel, Living with artificial grass: A knowledge update. Am. J. Sports Med. 18(4), 406–412 (1990). https://doi.org/10.1177/036354659001800413

    Article  CAS  Google Scholar 

  33. K. Murtaugh, Field hockey, in Epidemiology of Injury in Olympic Sports-Encyclopaedia of Sports Medicine, (Blackwell Publishing, West Sussex, 2009), pp. 133–142

    Chapter  Google Scholar 

  34. P. Fleming, Artificial turf systems for sport surfaces: Current knowledge and research needs. Proc. Inst. Mech. Eng. P. 225(2), 43–63 (2011). https://doi.org/10.1177/1754337111401688

    Article  Google Scholar 

  35. J. Prevost, J. Gilman, Synthetic grass sport surfaces, United States Patent No 6989179, 2006

    Google Scholar 

  36. J. De Clerck, N.V. Domo Zele, Synthetic turf, United States Patent No. 7399514, 2008

    Google Scholar 

  37. W.A. Adams, R.I. Young, S.W. Baker, Some soil and turf factors affecting playing characteristics of premier cricket pitches in the UK. Int. Turfgrass Soc. Res. J. 9, 451–457 (2001)

    Google Scholar 

  38. I.T. James, A.J. Mcleod, The effect of maintenance on the performance of sand-filled synthetic turf surfaces. Sports Technol. 3(1), 43–51 (2010). https://doi.org/10.1080/19346190.2010.504273

    Article  Google Scholar 

  39. P. Fleming, M. Ferrandino, S. Forrester, Artificial turf field – A new build case study. Procedia Eng. 147, 836–841 (2016). https://doi.org/10.1016/j.proeng.2016.06.294

    Article  Google Scholar 

  40. G. Schoukens, Developments in textile sports surfaces, in Advances in Carpet Manufacture, (Elsevier, 2009), pp. 101–133. https://doi.org/10.1016/B978-0-08-101131-7.00007-1

    Chapter  Google Scholar 

  41. A. Lees, L. Nolan, The biomechanics of soccer: A review. J. Sports Sci. 16(3), 211–234 (1998). https://doi.org/10.1080/026404198366740

    Article  CAS  Google Scholar 

  42. M. Schlegel, Does the game change?: Natural grass versus artificial turf sporting surfaces. Chem. Aust. 76(6), 14–18 (2009) [Online]. Available: https://search.informit.org/doi/10.3316/ielapa.840061229733317

    Google Scholar 

  43. S.E. Keinholz, Layered foundation for play surface, United States Patent No. 6287049, 2001

    Google Scholar 

  44. R.S. Reddick, Artificial turf system, United States Patent No. 7144609, 2006

    Google Scholar 

  45. P.F. Bull, Sporting surfaces, United States Patent No. 4897302, 1990

    Google Scholar 

  46. Stroppiana F, Synthetic grass structure, United States Patent No 6951670, 2005

    Google Scholar 

  47. W. Potthast, R. Verhelst, M. Hughes, K. Stone, D. De Clercq, Football-specific evaluation of player–surface interaction on different football turf systems. Sports Technol 3(1), 5–12 (2010). https://doi.org/10.1080/19346190.2010.504278

    Article  Google Scholar 

  48. K.A. Severn, P.R. Fleming, N. Dixon, Science of synthetic turf surfaces: Player–surface interactions. Sports Technol. 3(1), 13–25 (2010). https://doi.org/10.1080/19346190.2010.504279

    Article  Google Scholar 

  49. C. Young, P. Fleming, N. Dixon, Test devices for the evaluation of synthetic turf pitches for field hockey, in The Engineering of Sport 6, (Springer, New York, 2006), pp. 241–246. https://doi.org/10.1007/978-0-387-46050-5_43

    Chapter  Google Scholar 

  50. T. Allgeuer, E. Torres, S. Bensason, A. Chang, J. Martin, Study of shockpads as energy absorption layer in artificial turf surfaces. Sports Technol. 1(1), 29–33 (2008). https://doi.org/10.1080/19346182.2008.9648448

    Article  Google Scholar 

  51. P. Sandkuehler, E. Torres, T. Allgeuer, Polyolefin materials and technology in artificial turf I: Yarn developments. Sports Technol. 3(1), 52–58 (2010). https://doi.org/10.1080/19346190.2010.504276

    Article  Google Scholar 

  52. M. Peppelman, W.A. van den Eijnde, A.M. Langewouters, M. Weghuis, P.E. van Erp, The potential of the skin as a readout system to test artificial turf systems: Clinical and Immunohistological effects of a sliding on natural grass and artificial turf. Int. J. Sports Med. 34(09), 783–788 (2013). https://doi.org/10.1055/s-0032-1331173

    Article  CAS  Google Scholar 

  53. J. Prevost, Synthetic grass with resilient granular top surface layer, United States Patent No. 6746752, 2004

    Google Scholar 

  54. E. Torres, P. Sandkuehler, D.G. Muenzer, T. Allgeuer, Polyolefin materials and technology in artificial turf II: Infill developments. Sports Technol. 3(1), 59–63 (2010). https://doi.org/10.1080/19346190.2010.504275

    Article  Google Scholar 

  55. P. Sharma, P. Fleming, S. Forrester, J. Gunn, Maintenance of artificial turf – Putting research into practice. Procedia Eng. 147, 830–835 (2016). https://doi.org/10.1016/j.proeng.2016.06.298

    Article  Google Scholar 

  56. P.R. Fleming, C. Watts, S. Forrester, A new model of third generation artificial turf degradation, maintenance interventions and benefits. Proc. Inst. Mech. Eng. P, 175433712096160, https://doi.org/10.1177/1754337120961602 (2020)

  57. P. Fleming, Maintenance best practice and recent research. Proc. Inst. Mech. Eng. P 225(3), 159–170 (2011). https://doi.org/10.1177/1754337111405256

    Article  Google Scholar 

  58. J.B. Kirby, Fastest on the playground: Four generations of female sport experience. Qual. Rep. 26(8), Article 12 (2021)

    Google Scholar 

  59. G. Strutzenberger, H.-M. Cao, J. Koussev, W. Potthast, G. Irwin, Effect of turf on the cutting movement of female football players. J. Sport Health Sci. 3(4), 314–319 (2014). https://doi.org/10.1016/j.jshs.2014.07.004

    Article  Google Scholar 

  60. R.M. Lanzetti, A. Ciompi, D. Lupariello, M. Guzzini, A. De Carli, A. Ferretti, Safety of third-generation artificial turf in male elite professional soccer players in Italian major league. Scand. J. Med. Sci. Sports 27(4), 435–439 (2017). https://doi.org/10.1111/sms.12654

    Article  CAS  Google Scholar 

  61. R. Verhelst, S. Rambour, P. Verleysen, J. Degrieck, Temperature development during sliding on different types of artificial turf for hockey, in International Conference on Latest Advances in High-Tech Textiles and Textile-Based Materials, (2009), pp. 90–95. [Online]. Available: https://biblio.ugent.be/input/download?func=downloadFile&recordOId=767613&fileOId=767615

    Google Scholar 

  62. C. Walker, Performance of sports surfaces, in Materials in Sports Equipment, (Woodhead Publishing, Cambridge, 2003), pp. 47–64

    Chapter  Google Scholar 

  63. B. Kolgjini, Structure and long term properties of polyethylene monofilaments for artificial turf applications (Ghent University, Ghent, 2012)

    Google Scholar 

  64. M. Bussey, Risk factors for sports injury, in Sports Biomechanics, (Routledge, 2013), pp. 77–140

    Chapter  Google Scholar 

  65. B.M. Pluim, B. Clarsen, E. Verhagen, Injury rates in recreational tennis players do not differ between different playing surfaces. Br. J. Sports Med. 52(9), 611–615 (2018). https://doi.org/10.1136/bjsports-2016-097050

    Article  Google Scholar 

  66. E. Jenicek, A. Rodriguez, Evaluation of turfgrass replacement options: artificial turf, The U.S. Army Engineer Research and Development Center (ERDC), Sept 2019. https://doi.org/10.21079/11681/34244

  67. R.M. Eime, J.A. Young, J.T. Harvey, M.J. Charity, W.R. Payne, A systematic review of the psychological and social benefits of participation in sport for adults: Informing development of a conceptual model of health through sport. Int. J. Behav. Nutr. Phys. Act. 10(98), 1–21 (2013). https://doi.org/10.1186/1479-5868-10-135

    Article  Google Scholar 

  68. P.A. Harrison, G. Narayan, Differences in behavior, psychological factors, and environmental factors associated with participation in school sports and other activities in adolescence. J. Sch. Health 73(3), 113–120 (2003). https://doi.org/10.1111/j.1746-1561.2003.tb03585.x

    Article  Google Scholar 

  69. I. Janssen, A.G. Leblanc, Moderating influences of baseline activity levels in school physical activity programming for children: The ready for recess project. School Nutr Act 7(40), 155–172 (2015). https://doi.org/10.1201/b18227-14

    Article  Google Scholar 

  70. N.E. Andrew, B.J. Gabbe, R. Wolfe, P.A. Cameron, Evaluation of instruments for measuring the burden of sport and active recreation injury. Sports Med. 40(2), 141–161 (2010). https://doi.org/10.2165/11319750-000000000-00000

    Article  Google Scholar 

  71. M.C. Meyers, B.S. Barnhill, Incidence, causes, and severity of high school football injuries on FieldTurf versus natural grass. Am. J. Sports Med. 32(7), 1626–1638 (2004). https://doi.org/10.1177/0363546504266978

    Article  Google Scholar 

  72. M.C. Meyers, Incidence, mechanisms, and severity of match-related collegiate Women’s soccer injuries on FieldTurf and natural grass surfaces. Am. J. Sports Med. 41(10), 2409–2420 (2013). https://doi.org/10.1177/0363546513498994

    Article  Google Scholar 

  73. S. Williams, G. Trewartha, S.P.T. Kemp, R. Michell, K.A. Stokes, The influence of an artificial playing surface on injury risk and perceptions of muscle soreness in elite Rugby union. Scand. J. Med. Sci. Sports 26(1), 101–108 (2016). https://doi.org/10.1111/sms.12402

    Article  CAS  Google Scholar 

  74. M.C. Meyers, Incidence, mechanisms, and severity of game-related college football injuries on FieldTurf versus natural grass. Am. J. Sports Med. 38(4), 687–697 (2010). https://doi.org/10.1177/0363546509352464

    Article  Google Scholar 

  75. T. Soligard, R. Bahr, T.E. Andersen, Injury risk on artificial turf and grass in youth tournament football. Scand. J. Med. Sci. Sports 22(3), 356–361 (2012). https://doi.org/10.1111/j.1600-0838.2010.01174.x

    Article  CAS  Google Scholar 

  76. E.L. McCoy, Sand and organic amendment influences on soil physical properties related to turf establishment. Agron. J. 90(3), 411–419 (1998). https://doi.org/10.2134/agronj1998.00021962009000030016x

    Article  Google Scholar 

  77. S.P. Tay, P. Fleming, S. Forrester, X. Hu, Insights to skin-turf friction as investigated using the Securisport. Procedia Eng 112, 320–325 (2015). https://doi.org/10.1016/j.proeng.2015.07.252

    Article  Google Scholar 

  78. S. Hann, Environmental Impact Study on Artificial Football Turf, 2017. https://www.eunomia.co.uk/reports-tools/environmental-impact-study-on-artificial-football-turf/. Accessed 26 Oct 2022

    Google Scholar 

  79. Q. Liu, P. He, S. Yang, S. Bai, W. Duan, Recycling and reuse of waste artificial turf via solid-state shear milling technology. RSC Adv. 7(85), 54117–54127 (2017). https://doi.org/10.1039/C7RA11206H

    Article  CAS  Google Scholar 

  80. S. Kaoser, S. Barrington, M. Elektorowicz, Compartments for the Management of Municipal Solid Waste. J Soil Contam 9(5), 503–522 (2000). https://doi.org/10.1080/10588330091134374

    Article  CAS  Google Scholar 

  81. P. Usapein, O. Chavalparit, Options for sustainable industrial waste management toward zero landfill waste in a high-density polyethylene (HDPE) factory in Thailand. J. Mater Cycles Waste Manage. 16(2), 373–383 (2014). https://doi.org/10.1007/s10163-013-0198-6

    Article  CAS  Google Scholar 

  82. P. He, S. Bai, Q. Wang, Structure and performance of poly(vinyl alcohol)/wood powder composite prepared by thermal processing and solid state shear milling technology. Compos. B 99, 373–380 (2016). https://doi.org/10.1016/j.compositesb.2016.06.006

    Article  CAS  Google Scholar 

  83. P. Wei, S. Bai, Fabrication of a high-density polyethylene/graphene composite with high exfoliation and high mechanical performance via solid-state shear milling. RSC Adv. 5(114), 93697–93705 (2015). https://doi.org/10.1039/C5RA21271E

    Article  CAS  Google Scholar 

  84. S. Yang, S. Bai, Q. Wang, Morphology, mechanical and thermal oxidative aging properties of HDPE composites reinforced by nonmetals recycled from waste printed circuit boards. Waste Manag. 57, 168–175 (2016). https://doi.org/10.1016/j.wasman.2015.11.005

    Article  CAS  Google Scholar 

  85. J.L. Crompton, Potential negative outcomes from sponsorship for a sport property. Manag. Leis. 19(6), 420–441 (2014). https://doi.org/10.1080/13606719.2014.912050

    Article  Google Scholar 

  86. J.E. Sanders, J.M. Greve, S.B. Mitchell, S.G. Zachariah, Material properties of commonly-used interface materials and their static coefficients of friction with skin and socks. J. Rehabil. Res. Dev. 35(2), 161–176 (1998)

    CAS  Google Scholar 

  87. L. Degenhardt, E. Stockings, G. Patton, W.D. Hall, M. Lynskey, The increasing global health priority of substance use in young people. Lancet Psychiatry 3(3), 251–264 (2016). https://doi.org/10.1016/S2215-0366(15)00508-8

    Article  Google Scholar 

  88. A. Arafa Badr, Anti-microbial and durability characteristics of socks made of cotton and regenerated cellulosic fibers. Alex. Eng. J. 57(4), 3367–3373 (2018). https://doi.org/10.1016/j.aej.2017.11.015

    Article  Google Scholar 

  89. A. Luximon, A. Khandual, Footwear, in Waterproof and Water Repellent Textiles and Clothing, (Elsevier, 2018), pp. 533–558. https://doi.org/10.1016/B978-0-08-101212-3.00017-4

    Chapter  Google Scholar 

  90. B.L. Deopura, N.V. Padaki, Synthetic textile fibres, in Textiles and Fashion, (Elsevier, 2015), pp. 97–114. https://doi.org/10.1016/B978-1-84569-931-4.00005-2

    Chapter  Google Scholar 

  91. R.R. Van Amber, B.J. Lowe, B.E. Niven, R.M. Laing, C.A. Wilson, S. Collie, The effect of fiber type, yarn structure and fabric structure on the frictional characteristics of sock fabrics. Text. Res. J. 85(2), 115–127 (2015). https://doi.org/10.1177/0040517514530029

    Article  CAS  Google Scholar 

  92. D.H. Richie, Athletic socks, in Athletic Footwear and Orthoses in Sports Medicine, (Springer, Cham, 2017), pp. 91–105. https://doi.org/10.1007/978-3-319-52136-7_7

    Chapter  Google Scholar 

  93. S.J. Otter et al., Protective socks for people with diabetes: a systematic review and narrative analysis. J Foot Ankle Res 8(1), 9 (2015). https://doi.org/10.1186/s13047-015-0068-7

    Article  Google Scholar 

  94. E. Escamilla-Martínez, B. Gómez-Martín, R. Sánchez-Rodríguez, L.M. Fernández-Seguín, P. Pérez-Soriano, A. Martínez-Nova, Running thermoregulation effects using bioceramics versus polyester fibres socks. J. Ind. Text. 51(8), 1236–1249 (2022). https://doi.org/10.1177/1528083719898850

    Article  CAS  Google Scholar 

  95. W.L. Chen, M.M. He, M.Y. Zhang, Z.C. Tang, Wearing performances of floret silk/cotton blended sports socks. Adv. Mater. Res. 532–533, 101–104 (2012). https://doi.org/10.4028/www.scientific.net/AMR.532-533.101

    Article  Google Scholar 

  96. M. Sanami, N. Ravirala, K. Alderson, A. Alderson, Auxetic materials for sports applications. Procedia Eng. 72, 453–458 (2014). https://doi.org/10.1016/j.proeng.2014.06.079

    Article  Google Scholar 

  97. T.H. Ellis, Sports protective equipment. Prim. Care 18(4), 889–921 (1991). https://doi.org/10.1016/S0095-4543(21)00111-1

    Article  CAS  Google Scholar 

  98. S.L.P. Tang, Wearable sensors for sports performance, in Textiles for Sportswear, (Elsevier, 2015), pp. 169–196. https://doi.org/10.1016/B978-1-78242-229-7.00008-4

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gopalakrishnan, M., Saravanan, D., Saravanan, K., Punitha, V., Mounika, S. (2023). Sustainable Approaches for Non-apparel Textile Products Used in Sports. In: Muthu, S.S. (eds) Novel Sustainable Raw Material Alternatives for the Textiles and Fashion Industry. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-37323-7_6

Download citation

Publish with us

Policies and ethics