Skip to main content

An Alternative Fiber Source in Sustainable Textile and Fashion Design: Cellulosic Akund Fibers

  • Chapter
  • First Online:
Novel Sustainable Raw Material Alternatives for the Textiles and Fashion Industry

Abstract

Akund fibers are natural cellulosic fibers classified as seed fibers such as cotton, kapok, and milkweed. Akund fibers, which have structural and physical properties very similar to fibers such as kapok and milkweed, are a commercially widespread type. It stands out among natural fibers with its hollow fiber structure and low fiber density. It is accepted as a sustainable raw material source with features such as renewability, biodegradability, eco-friendly, nontoxicity, and similar features. The hollow structure of akund fibers, whose spinnability is weak as experienced in kapok and milkweed fibers, makes these fibers an important fiber source for advanced materials such as home textiles, composite textiles, and technical textiles. At the same time, studies on the development of the spinning properties of these fibers can be considered as an evidence of the potentiality of these fibers to be used as raw materials for the garment industry shortly. In this chapter, it is aimed to benefit future studies by summarizing the structure, properties, and utilization areas of akund fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Birliği UHGvKİ. Hazır Giyim Sektöründe Sürdürülebilir Trendler 2017

    Google Scholar 

  2. E. Kalayci, O. Avinc, A. Yavas, S. Coskun, Responsible textile design and manufacturing: Environmentally conscious material selection, in Responsible Manufacturing: Issues Pertaining to Sustainability, ed. by A.Y. Alqahtani, E. Kongar, K.K. Pochampally, S.M. Gupta, (Taylor & Francis, 2019)

    Google Scholar 

  3. E. Kalayci, O. Avinc, A. Yavas (eds.), Sustainable decisions and approaches in textile production, in 3rd International Conference on Computational Mathematics and Engineering Sciences; Girne/Turkish Republic of Northern Cyprus, 2017

    Google Scholar 

  4. E. Bakan, O. Avinc, Sustainable carpet and rug hand weaving in Uşak province of Turkey, in Handloom Sustainability and Culture: Artisanship and Value Addition, ed. by M.Á. Gardetti, S.S. Muthu, (Springer, Singapore, 2021), pp. 41–93

    Chapter  Google Scholar 

  5. G.K. Günaydın, O. Avinc, A sustainable alternative for the woven fabrics: “Traditional Buldan handwoven fabrics”, in Handloom Sustainability and Culture: Entrepreneurship, Culture and Luxury, ed. by M.Á. Gardetti, S.S. Muthu, (Springer, Singapore, 2021), pp. 87–117

    Chapter  Google Scholar 

  6. F. Unal, A. Yavas, O. Avinc, Sustainability in textile design with laser technology, in Sustainability in the Textile and Apparel Industries, (Springer, Cham, 2020), pp. 263–287

    Chapter  Google Scholar 

  7. F. Unal, O. Avinc, A. Yavas, H.A. Eren, S. Eren, Contribution of UV technology to sustainable textile production and design, in Sustainability in the Textile and Apparel Industries, (Springer, Cham, 2020), pp. 163–187

    Chapter  Google Scholar 

  8. H.A. Eren, İ. Yiğit, S. Eren, O. Avinc, Sustainable textile processing with zero water utilization using super critical carbon dioxide technology, in Sustainability in the Textile and Apparel Industries, (Springer, Cham, 2020), p. 179

    Chapter  Google Scholar 

  9. H.A. Eren, İ. Yiğit, S. Eren, O. Avinc, Ozone: An alternative oxidant for textile applications, in Sustainability in the Textile and Apparel Industries, (Springer, Cham, 2020), p. 81

    Chapter  Google Scholar 

  10. S. Eren, O. Avinc, Z. Saka, H.A. Eren, Waterless bleaching of knitted cotton fabric using supercritical carbon dioxide fluid technology. Cellulose 25(10), 6247–6267 (2018)

    Article  CAS  Google Scholar 

  11. O. Avinc, B. Erismis, S. Eren, Treatment of cotton with a laccase enzyme and ultrasound/Tratamentul bumbacului cu enzima tip lacaza si ultrasunete. Ind. Text. 67(1), 55 (2016)

    CAS  Google Scholar 

  12. E. Alkaya, G.N. Demirer, Sustainable textile production: A case study from a woven fabric manufacturing mill in Turkey. J. Clean. Prod. 65(0), 595–603 (2014)

    Article  CAS  Google Scholar 

  13. O. Avinc, H.A. Eren, P. Uysal, Ozone applications for after-clearing of disperse-dyed poly (lactic acid) fibres. Color. Technol. 128(6), 479–487 (2012)

    Article  CAS  Google Scholar 

  14. H.A. Eren, O. Avinc, P. Uysal, M. Wilding, The effects of ozone treatment on polylactic acid (PLA) fibres. Text. Res. J. 81(11), 1091–1099 (2011)

    Article  CAS  Google Scholar 

  15. F.S. Fattahi, A. Khoddami, O. Avinc, Sustainable, renewable, and biodegradable poly (lactic acid) fibers and their latest developments in the last decade, in Sustainability in the Textile and Apparel Industries, (Springer, Cham, 2020), p. 173

    Chapter  Google Scholar 

  16. E. Kalaycı, O. Avinc, A. Yavaş, The effects of different alkali treatments with different temperatures on the colorimetric properties of lignocellulosic raffia fibers. Int. J. Adv. Sci. Eng. Technol. 7(1), 15–19 (2019)

    Google Scholar 

  17. E. Kalaycı, O. Avinç, A. Yavaş, Usage of horse hair as a textile fiber and evaluation of color properties. Annals of the University of Oradea Fascicle of Textiles, Leatherwork. 2019(1), 57–62 (2019)

    Google Scholar 

  18. M. Kurban, A. Yavas, O. Avinc, Nettle biofibre bleaching with ozonation/Albirea biofibrei din urzica prin ozonizare. Ind. Text. 67(1), 46 (2016)

    CAS  Google Scholar 

  19. H. Hasani, O. Avinc, A. Khoddami, Comparison of softened polylactic acid and polyethylene terephthalate fabrics using KES-FB. Fibres Text. East. Eur. 3(99), 81–88 (2013)

    Google Scholar 

  20. F.F. Yildirim, O. Avinc, A. Yavas, Eco-friendly plant based regenerated protein fiber: Soybean, in 19th International Conference Structure and Structural Mechanics of Textiles, (TU Liberec, Czech Republic, 2012)

    Google Scholar 

  21. M. Kurban, A. Yavaş, O. Avinç, Isırgan Otu Lifi ve Özellikleri. Tekstil Teknolojileri Elektronik Dergisi. 5(1), 84–106 (2011)

    Google Scholar 

  22. A. Khoddami, O. Avinc, F. Ghahremanzadeh, Improvement in poly (lactic acid) fabric performance via hydrophilic coating. Prog. Org. Coat. 72(3), 299–304 (2011)

    Article  CAS  Google Scholar 

  23. O. Avinc, A. Khoddami, Overview of poly (lactic acid)(PLA) fibre. Fibre Chem. 42(1), 68–78 (2010)

    Article  CAS  Google Scholar 

  24. F.F. Yıldırım, A. Yavas, O. Avinc, Bacteria working to create sustainable textile materials and textile colorants leading to sustainable textile design, in Sustainability in the Textile and Apparel Industries, (Springer, Cham, 2020), pp. 109–126

    Chapter  Google Scholar 

  25. PE International, The Life Cycle Assessment of Organic Cotton Fiber – A Global Average, Summary of Findings. Textile Exchange (PE International, 2014)

    Google Scholar 

  26. S. Kumartasli, O. Avinc, Recycled thermoplastics: Textile fiber production, scientific and recent commercial developments, in Recent Developments in Plastic Recycling, (Springer, 2021), pp. 169–192

    Chapter  Google Scholar 

  27. S. Kumartasli, O. Avinc, Recycling of marine litter and ocean plastics: A vital sustainable solution for increasing ecology and health problem, in Sustainability in the Textile and Apparel Industries, (Springer, Cham, 2020), p. 117

    Chapter  Google Scholar 

  28. S. Kumartasli, O. Avinc, Important step in sustainability: Polyethylene terephthalate recycling and the recent developments, in Sustainability in the Textile and Apparel Industries, (Springer, Cham, 2020), p. 1

    Google Scholar 

  29. Bakanlığı TCSvT. Tekstil, hazırgiyim ve deri ürünleri sektörleri raporu 2020

    Google Scholar 

  30. E. Kalaycı, O.O. Avinç, A. Bozkurt, A. Yavaş, Tarımsal atıklardan elde edilen sürdürülebilir tekstil lifleri: Ananas yaprağı lifleri. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 20(2), 203–221 (2016)

    Article  Google Scholar 

  31. F. Unal, A. Yavas, O. Avinc, Contributions to sustainable textile design with natural raffia palm fibers, in Sustainability in the Textile and Apparel Industries, (Springer, Cham, 2020), pp. 67–86

    Chapter  Google Scholar 

  32. F. Unal, O. Avinc, A. Yavas, Sustainable textile designs made from renewable biodegradable sustainable natural abaca fibers, in Sustainability in the Textile and Apparel Industries, (Springer, Cham, 2020), pp. 1–30

    Google Scholar 

  33. A. Ashori, Z. Bahreini, Evaluation of Calotropis gigantea as a promising raw material for fiber-reinforced composite. J. Compos. Mater. 43(11), 1297–1304 (2009)

    Article  CAS  Google Scholar 

  34. T. Dinesh, S. Boopathy, S.P. Arokiam, L. Gunasekaran, N. Senniangiri, An experimental investigation on mechanical properties of natural fiber reinforced composites. Int. J. Res. Eng. Appl. Manage. 7(5), 176–178

    Google Scholar 

  35. T. Amuthan, V. Paramasivam, Effects of chemical treatment and evaluation on mechanical properties of natural fiber reinforced polymer composites. Int. J. Appl. Eng. Res. 10(39), 29468 (2015)

    Google Scholar 

  36. X. Yang, L.Q. Huang, L.D. Cheng (eds.), Study on the structure and the properties of akund fiber, in Applied Mechanics and Materials (Trans Tech Publ, 2012)

    Google Scholar 

  37. Q. Wang, L.D. Cheng, X. Jiang, E. Stojanovska, W.H. Fan (eds.), Study on Basic Properties of Akund Fibers and Pretreatment Process, Advanced Materials Research (Trans Tech Publ, 2012)

    Google Scholar 

  38. X. Yang, L.D. Cheng, L.Q. Huang, W.H. Fan (eds.), Study on the Correlation Between the Property of Akund Fiber and Its Growing Conditions, Advanced Materials Research (Trans Tech Publ, 2012)

    Google Scholar 

  39. N. Wang, X. An, W. Shen, Preparation, surface structure and properties for conductive fibers of akund-(Polypyrrole/AgNPs) n with multilayer self-assembly structure. Mater. Lett. 295, 129812 (2021)

    Article  CAS  Google Scholar 

  40. P. Ovlaque, Valorisation de la fibre d’asclépiade pour le renforcement de matrices organiques (UNIVERSITÉ DE SHERBROOKE, Sherbrooke (Québec), 2019)

    Google Scholar 

  41. P.G. Tortora, I. Johnson, The Fairchild Books Dictionary of Textiles (A&C Black, New York, 2013)

    Google Scholar 

  42. S.J. Eichhorn, J.W.S. Hearle, M. Jaffe, T. Kikutani, Handbook of Textile Fibre Structure, vol 2 (Woodhead Publishing Limited, Cambridge, 2009)

    Book  Google Scholar 

  43. S. Koch, K. Nehse, Fibers, in Handbook of Trace Evidence Analysis, (2020), pp. 322–376

    Chapter  Google Scholar 

  44. E. Wellfelt, The Secrets of Alorese ‘silk’yarn: Kolon Susu, Triangle Trade and Underwater Women in Eastern Indonesia in14th Biennial Symposium, Los Angeles, USA, (Textile Society of America Symposium Proceedings. 943), 2014

    Google Scholar 

  45. G. McDougall, I. Morrison, D. Stewart, J. Weyers, J. Hillman, Plant fibres: Botany, chemistry and processing for industrial use. J. Sci. Food Agric. 62(1), 1–20 (1993)

    Article  CAS  Google Scholar 

  46. G.E. Wickens, Vegetable fibres, in Economic Botany, (Springer, 2001), pp. 263–279

    Chapter  Google Scholar 

  47. X. Jiang, L.D. Cheng, J.Y. Yu, Q. Wang, E. Stojanovska, S.W. Xu (eds.), Relationship between Akund Fibers’ Carding and Sliver Quality, Advanced Materials Research (Trans Tech Publ, 2012)

    Google Scholar 

  48. Wellfelt E. The secrets of Alorese ‘Silk’ yarn: Kolon susu, triangle trade and underwater women in Eastern Indonesia. Textile Society of America 2014 Biennial Symposium Proceedings: New Directions: Examining the Past, Creating the Future; Los Angeles, California 2014

    Google Scholar 

  49. A. Pandey, R. Gupta, Fibre yielding plants of India: Genetic resources, perspective for collection and utilization. Nat. Prod. Rad. 2(4), 194–204 (2003)

    Google Scholar 

  50. I. Gupta, S. Gupta, Concept’s Dictionary of Agricultural Sciences (Concept Publishing Company, 1992)

    Google Scholar 

  51. S.M. Rangappa, S. Siengchin, J. Parameswaranpillai, M. Jawaid, T. Ozbakkaloglu, Lignocellulosic fiber reinforced composites: Progress, performance, properties, applications, and future perspectives. Polym. Compos. 43(2), 645–691 (2022)

    Google Scholar 

  52. M.P. Ansell, L.Y. Mwaikambo, The structure of cotton and other plant fibres, in Handbook of Textile Fibre Structure, (Elsevier, 2009), pp. 62–94

    Chapter  Google Scholar 

  53. J. Yan, Y.M. Cui, L.D. Cheng, W.H. Fan (eds.), Study on Sedimentation Differences among Akund Fiber, Its Seed and Capsule, Advanced Materials Research (Trans Tech Publ, 2013)

    Google Scholar 

  54. G. Yazıcıoğlu, Pamuk ve Diğer Bitkisel Lifler (Tekstil Mühendisliği Bölümü Mühendislik Fakültesi Basım Ünitesi, İzmir, Türkiye, 1999)

    Google Scholar 

  55. B. Bhattacharyya, Golden greens: The amazing world of plants (The Energy and Resources Institute (TERI), 2015)

    Google Scholar 

  56. R.P. Sharma. The Indian Forester 1943

    Google Scholar 

  57. S. Maity, H.S. Mohapatra, A. Chatterjee, New generation natural fiber-akund floss. Melliand Int. 20(1), 22–24 (2014)

    CAS  Google Scholar 

  58. R.K. Upadhyay, Ethnomedicinal, pharmaceutical and pesticidal uses of Calotropis procera (Aiton) (family: Asclepiadaceae). Int. J. Green Pharm. 8(3), 135–146 (2014)

    Article  CAS  Google Scholar 

  59. A. Prakash, J. Rao, Botanical pesticides in agriculture (CRC Press, 2018)

    Book  Google Scholar 

  60. G.H. Schmelzer, A. Gurib-Fakim, Plant Resources of Tropical Africa 11 (2) Medicinal Plants 2, (PROTA Foundation), Wageningen, Netherlands, 2008, pp. 36–37

    Google Scholar 

  61. X. Yang, L. Huang, L. Cheng, J. Yu, Studies of moisture absorption and release behaviour of Akund fiber. Adv. Mech. Eng. 4, 356548 (2012)

    Article  Google Scholar 

  62. X. Yang, X. An, Functional akund fibres by loading of carbon dots through an in-situ method. Appl. Surf. Sci. 495, 143574 (2019)

    Article  CAS  Google Scholar 

  63. M.A. Al Sulaibi, C. Thiemann, T. Thiemann, Chemical constituents and uses of Calotropis procera and Calotropis gigantea–A Review (Part I–The plants as material and energy resources). Open Chem. J. 7(1), (2020), 1–15

    Google Scholar 

  64. E. Kalayci, F.F. Yildirim, O.O. Avinc, A. Yavas, Textile Fibers Used in Products Floating on the Water (Textile Science and Economy VII, Zrenjanin, 2015), pp. 85–90

    Google Scholar 

  65. R. Kozlowski, Handbook of Natural Fibres: Types, Properties and Factors Affecting Breeding and Cultivation (Woodhead Publishing Limited, Cambridge, 2012)

    Book  Google Scholar 

  66. R. Nayak, S. Houshyar, A. Khandual, R. Padhye, S. Fergusson, Identification of natural textile fibres, in Handbook of Natural Fibres, (Elsevier, 2020), pp. 503–534

    Chapter  Google Scholar 

  67. M. Robert, P. Ovlaque, Foruzanmehr MR. Hollow Floss Fibers (CRC Press, 2018), p. 22

    Google Scholar 

  68. C. Richard, Caractérisation chimique des fibres d’asclépiade et l’effet de différents traitements sur son comportement (UNIVERSITÉ DE SHERBROOKE, Sherbrook, 2018)

    Google Scholar 

  69. K.B. Turkoglu, E. Kalayci, O. Avinc, A. Yavas, Oleofilik buoyans özellikli kapok lifleri ve yenilikçi yaklaşımlar. Düzce Üniversitesi Bilim ve Teknoloji Dergisi. 7(1), 61–89 (2019)

    Article  Google Scholar 

  70. S. Hassanzadeh, H. Hasani, A review on milkweed fiber properties as a high-potential raw material in textile applications. J. Ind. Text. 46(6), 1412–1436 (2017)

    Article  CAS  Google Scholar 

  71. W.D. Li, X. Li, M.H. Xu (eds.), The Structure and Property of Akund, Key Engineering Materials (Trans Tech Publ, 2019)

    Google Scholar 

  72. Q. Wang, L.D. Cheng, X. Jiang, E. Stojanovska (eds.), Study on Carding Processing Length Of Akund, Advanced Materials Research (Trans Tech Publ, 2012)

    Google Scholar 

  73. L.K. Rao, L.D. Cheng, Y.L. Li, W.H. Fan (eds.), Research On Sizing Performance Of Akund Blended Yarns, Advanced Materials Research (Trans Tech Publ, 2012)

    Google Scholar 

  74. Q. Wang, X. Jiang, E. Stojanovska, L.D. Cheng, W.H. Fan (eds.), Study on Processing of Cotton/Akund Fibers Blended Yarn, Applied Mechanics and Materials (Trans Tech Publ, 2012)

    Google Scholar 

  75. X. Jiang, Q. Wang, L.D. Cheng, J.Y. Yu (eds.), Comparison of the Properties of Akund/Cotton Blended Yarn Produced by Compact Spinning with Pure Cotton Yarn, Applied Mechanics and Materials (Trans Tech Publ, 2012)

    Google Scholar 

  76. Fuyang Hengtai Textile Co Ltd., Combing polyester-cotton blend and akund mixed yarn and preparation method thereof, Patent Number: CN107523913A, China, 2017

    Google Scholar 

  77. Y. Qi, F. Xu, C. Longdi, Z. Ruiyun, L. Lifang, F. Wenhong, et al., Evaluation on a promising natural cellulose fiber–Calotropis gigantea fiber. Trends Text. Eng. Fashion Technol. 2, 205–211 (2018)

    Google Scholar 

  78. R. Singh, A. Gehlot, S.V. Akram, A.K. Thakur, D. Buddhi, P.K. Das, Forest 4.0: Digitalization of forest using the internet of things (IoT). J King Saud Univ-Comput Inf Sci. (2021)

    Google Scholar 

  79. Q. Yu, X. Liu, J. Zhang, F. Yin, J. Lai, T. Wang (eds.), Preparation of Zirconia Fiber Based on Akund Template, Journal of Physics: Conference Series (IOP Publishing, 2020)

    Google Scholar 

  80. Saeed U, Taimoor AA, Rather S, Al-Zaitone B, Al-Turaif H. Characterization of cellulose nanofibril reinforced polybutylene succinate biocomposite. J. Thermoplast. Compos. Mater. 2022:08927057211063396

    Google Scholar 

  81. S. Sanjeevi, V. Shanmugam, S. Kumar, V. Ganesan, G. Sas, D.J. Johnson, et al., Effects of water absorption on the mechanical properties of hybrid natural fibre/phenol formaldehyde composites. Sci. Rep. 11(1), 1–11 (2021)

    Article  Google Scholar 

  82. A. Nourbakhsh, A. Ashori, M. Kouhpayehzadeh, Giant milkweed (Calotropis persica) fibers—A potential reinforcement agent for thermoplastics composites. J. Reinf. Plast. Compos. 28(17), 2143–2149 (2009)

    Article  CAS  Google Scholar 

  83. H. Hamada, J. Denault, A.K. Mohanty, Y. Li, M.S. Aly-Hassan, Natural Fiber Composites (SAGE, London, 2013), p. 569020

    Google Scholar 

  84. W. Xiao, B. Niu, M. Yu, C. Sun, L. Wang, L. Zhou, et al., Fabrication of foam-like oil sorbent from polylactic acid and Calotropis gigantea fiber for effective oil absorption. J. Clean. Prod. 278, 123507 (2021)

    Article  CAS  Google Scholar 

  85. Y. Zheng, E. Cao, L. Tu, A. Wang, H. Hu, A comparative study for oil-absorbing performance of octadecyltrichlorosilane treated Calotropis gigantea fiber and kapok fiber. Cellulose 24(2), 989–1000 (2017)

    Article  CAS  Google Scholar 

  86. Y. Zheng, E. Cao, Y. Zhu, A. Wang, H. Hu, Perfluorosilane treated Calotropis gigantea fiber: Instant hydrophobic–oleophilic surface with efficient oil-absorbing performance. Chem. Eng. J. 295, 477–483 (2016)

    Article  CAS  Google Scholar 

  87. L. Tu, W. Duan, W. Xiao, C. Fu, A. Wang, Y. Zheng, Calotropis gigantea fiber derived carbon fiber enables fast and efficient absorption of oils and organic solvents. Sep. Purif. Technol. 192, 30–35 (2018)

    Article  CAS  Google Scholar 

  88. Q.-Q. Yang, L.-F. Gao, Z.-Y. Zhu, C.-X. Hu, Z.-P. Huang, R.-T. Liu, et al., Confinement effect of natural hollow fibers enhances flexible supercapacitor electrode performance. Electrochim. Acta 260, 204–211 (2018)

    Article  CAS  Google Scholar 

  89. R.M. Kozłowski, M. Mackiewicz-Talarczyk, J. Barriga-Bedoya, New emerging natural fibres and relevant sources of information, in Handbook of Natural Fibres, (Elsevier, 2020), pp. 747–787

    Chapter  Google Scholar 

  90. Z. Zhao, Z. Zheng, P. Chen, H. Zhang, C. Yang, X. Wang, et al., Pre-treatment of Calotropis gigantea fibers with functional plasticizing and toughening auxiliary agents. Text. Res. J. 89(19–20), 3997–4006 (2019)

    Article  CAS  Google Scholar 

  91. W. Tezara, R. Colombo, I. Coronel, O. Marín, Water relations and photosynthetic capacity of two species of Calotropis in a tropical semi-arid ecosystem. Ann. Bot. 107(3), 397–405 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozan Avinc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalayci, E., Avinc, O., Yavas, A. (2023). An Alternative Fiber Source in Sustainable Textile and Fashion Design: Cellulosic Akund Fibers. In: Muthu, S.S. (eds) Novel Sustainable Raw Material Alternatives for the Textiles and Fashion Industry. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-37323-7_10

Download citation

Publish with us

Policies and ethics