Skip to main content

Residual Stresses in a Thermo-viscoelastic Additively Manufactured Cylinder Subjected to Induction Heating

  • 86 Accesses

Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The present paper is devoted for modeling the temperature and residual stress fields evolution in a thermoviscoelastic cylinder that grows layer by layer, and to what extent does the degree of viscosity affect the residual stress reduction. The essence of this mathematical model is to analyze a series of initial-boundary value problems that describe the steps of the growth process, to give qualitative clarification for residual stress accumulation and distortion of final geometric shape. At each step, the domain in which the physical quantities are studied, increases due to adding a layer. The inductive heating by skin effect phenomena is applied during the additive process to minimize residual stresses intensity which appears in additive manufacturing, particularly in SLM or SLS technological processes. The temperature field on the growing surface is analyzed numerically for Titanium and Copper materials.

Keywords

  • Additive manufacturing
  • Residual stresses
  • Growing solids
  • Coupling effects
  • Thermal dissipation
  • Internal dissipation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Levy, G.N., Schindel, R., Kruth, J.P.: Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP Annals. 52(2), 589–609 (2003)

    CrossRef  Google Scholar 

  2. DebRoy, T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O., Beese, A.M., Wilson-Heid, A., De, A., Zhang, W.: Additive manufacturing of metallic components-process, structure and properties. Prog. Mater. Sci. 92, 112–224 (2018)

    CrossRef  Google Scholar 

  3. Kruth, J.P., Leu, M.C., Nakagawa, T.: Progress in additive manufacturing and rapid prototyping. CIRP Annal.-Manuf. Technol. 47(2), 525–540 (1998)

    Google Scholar 

  4. Meiners, W., Wissenbach, K., Gasser, A.: Shaped body especially prototype or replacement part production. DE Patent, vol. 19 (1998)

    Google Scholar 

  5. Ciarletta, P., Destrade, M., Gower, A.L., Taffetani, M.: Morphology of residually stressed tubular tissues: beyond the elastic multiplicative decomposition. J. Mech. Phys. Solids. 90, 242–53 (2016)

    CrossRef  MathSciNet  Google Scholar 

  6. Green, A.E.: Thermoelastic stresses in initially stressed bodies. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 266(1324):1–9

    Google Scholar 

  7. Johnson, B.E., Hoger, A.: The use of a virtual configuration in formulating constitutive equations for residually stressed elastic materials. J. Elast. 41(3), 177–215 (1995)

    CrossRef  MathSciNet  MATH  Google Scholar 

  8. Klarbring, A., Olsson, T., Stalhand, J.: Theory of residual stresses with application to an arterial geometry. Arch. Mech. 59(4–5), 341–64 (2007)

    Google Scholar 

  9. Ozakin, A., Yavari, A.: A geometric theory of thermal stresses. J. Math. Phys. 51(3), 032902 (2010)

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. Sadik, S., Yavari, A.: Geometric nonlinear thermoelasticity and the time evolution of thermal stresses. Math. Mech. Solids. 22(7), 1546–87 (2017)

    CrossRef  MathSciNet  MATH  Google Scholar 

  11. Wang, J., Slattery, S.P.: Thermoelasticity without energy dissipation for initially stressed bodies. Int. J. Math. Math. Sci. 31 (2002)

    Google Scholar 

  12. Lychev, S.A., Fekry, M.: Evaluation of residual stresses in additively produced thermoelastic cylinder. Part II. Residual stresses. Mech. Adv. Mater. Struct. 1–10 (2022)

    Google Scholar 

  13. Lychev, S.A., Fekry, M.: Residual stresses in a thermoelastic cylinder resulting from layer-by-layer surfacing. Vestnik of samara university. Nat. Sci. Ser. 26(3), 63–90 (2021)

    Google Scholar 

  14. Mercelis, P., Kruth, J.P.: Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J. (2006)

    Google Scholar 

  15. Buchbinder, D., Meiners, W., Pirch, N., Wissenbach, K., Schrage, J.: Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting. J. Laser Appl. 26(1), 012004 (2014)

    CrossRef  Google Scholar 

  16. Zaeh, M.F., Branner, G.: Investigations on residual stresses and deformations in selective laser melting. Prod. Eng. 4(1), 35–45 (2010)

    CrossRef  Google Scholar 

  17. Vilaro, T., Colin, C., Bartout, J.D.: As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting. Metallurg. Mater. Trans. A. 42(10), 3190–9 (2011)

    CrossRef  Google Scholar 

  18. Kruth, J.P., Deckers, J., Yasa, E., Wauthlé, R.: Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 226(6), 980–91 (2012)

    Google Scholar 

  19. Lychev, S.A., Fekry, M.: Evaluation of residual stresses in additively produced thermoelastic cylinder. Part I. Therm. Fields. Mech. Adv. Mater. Struct. 1–16 (2022)

    Google Scholar 

  20. Lychev, S.A., Fekry, M.: Reducing of residual stresses in metal parts produced by SLM additive technology with selective induction heating. In: Lecture Notes in Mechanical Engineering (accepted in publishing)

    Google Scholar 

  21. Arutyunyan, N.K., Drozdov, A.D., Naumov, V.E.: Mechanics of growing viscoelastoplastic bodies (1987)

    Google Scholar 

  22. Lychev, S.A., Manzhirov, A.V.: The mathematical theory of growing bodies. Finite deformations. J. Appl. Math. Mech. 77(4), 421–32 (2013)

    CrossRef  MathSciNet  MATH  Google Scholar 

  23. Lychev, S.A., Manzhirov, A.V.: Reference configurations of growing bodies. Mechanics of Solids 48(5), 553–560 (2013). https://doi.org/10.3103/S0025654413050117

    CrossRef  Google Scholar 

  24. Lychev, S.A.: Universal deformations of growing solids. Mech. Solids 46(6), 863–76 (2011)

    CrossRef  Google Scholar 

  25. Lychev, S., Manzhirov, A., Shatalov, M., Fedotov, I.: Transient temperature fields in growing bodies subject to discrete and continuous growth regimes. Procedia IUTAM. 1(23), 120–9 (2017)

    Google Scholar 

  26. Polyanin, A.D., Lychev, S.A.: Decomposition methods for coupled 3D equations of applied mathematics and continuum mechanics: partial survey, classification, new results, and generalizations. Appl. Math. Model. 40(4), 3298–324 (2016)

    CrossRef  MathSciNet  MATH  Google Scholar 

  27. Lychev, S, Koifman, K.: Geometry of Incompatible Deformations: Differential Geometry in Continuum Mechanics. De Gruyter (2018)

    Google Scholar 

  28. Yavari, A.: A geometric theory of growth mechanics. J. Nonlinear Sci. 20(6), 781–830 (2010)

    CrossRef  MathSciNet  MATH  Google Scholar 

  29. Lychev, S.A., Manzhirov, A.V.: Discrete and continuous growth of hollow cylinder. Finite deformations. In: Proceedings of the World Congress on Engineering, vol. 2 (2014)

    Google Scholar 

  30. Levitin, A.L., Lychev, S.A., Manzhirov, A.V., Shatalov, M.Y.: Nonstationary vibrations of a discretely accreted thermoelastic parallelepiped. Mech. Solids. 47(6), 677–89 (2012)

    CrossRef  Google Scholar 

  31. Othman, M.I., Fekry, M.: The effect of initial stress on generalized thermoviscoelastic medium with voids and temperature-dependent properties under green-neghdi theory. Mech. Mech. Eng. 21(2), 291–308 (2017)

    Google Scholar 

  32. Othman, M.I., Fekry, M., Marin, M.: Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating. Struct. Eng. Mech. 73(6), 621–9 (2020)

    Google Scholar 

  33. Nowacki, W.: Theory of Elasticity [in Polish]. PWN, Warszawa (1970)

    Google Scholar 

  34. Othman, M.I.A., Fekry, M.: Effect of magnetic field on generalized thermo-viscoelastic diffusion medium with voids. Int. J. Struct. Stabil. Dyn. 16(7), 1550033 (2016)

    CrossRef  MathSciNet  MATH  Google Scholar 

  35. Othman, M.I.A., Fekry, M.: Effect of rotation and gravity on generalized thermo-viscoelastic medium with voids. In: Multidiscipline Modeling in Materials and Structures (2018)

    Google Scholar 

  36. Lorrain, P., Corson, D.R.: Electromagnetic Fields and Waves (1970)

    Google Scholar 

  37. Weeks, W.L.: Transmission and Distribution of Electrical Energy. Harpercollins (1981)

    Google Scholar 

  38. Lychev, S.A., Senitskii, Y.E.: Nonsymmetric finite integral transformations and their applications to viscoelasticity problems, pp. 16–38. Vestnik Samar. Gos. Univ. Estestvennonauchn. Ser, Special Issue (2002)

    MATH  Google Scholar 

  39. Lychev, S.A.: Coupled dynamic thermoviscoelasticity problem. Mechan. Solid. 43(5), 769–784 (2008)

    Google Scholar 

  40. Levitin, A.L., Lychev, S.A., Saifutdinov, I.N.: Transient dynamical problem for a accreted thermoelastic parallelepiped. In: Proceedings of the World Congress on Engineering, vol. 2 (2014)

    Google Scholar 

  41. Lychev, S.A., Manzhirov, A.V., Joubert, S.V.: Closed solutions of boundary-value problems of coupled thermoelasticity. Mechan. Solid. 45(4), 610–23 (2010)

    CrossRef  Google Scholar 

  42. Zhilin, P.A., Il’icheva, T.P.: Spectra and oscillation mode shapes of a rectangular parallelepiped obtained using three-dimensional theory of elasticity and theory of plates. Mech. Solids 15(2), 94–103 (1980)

    Google Scholar 

  43. Donachie, M.J.: Titanium: A Technical Guide. ASM International (2000)

    Google Scholar 

  44. John, F.: Partial Differential Equations. Springer, New York (1982)

    CrossRef  MATH  Google Scholar 

Download references

Acknowledgements

The study was partially supported by the Russian Government program (contract \( \#\)AAAA-A20-120011690132-4) and partially supported by RFBR (grant No. 18-08-01346 and grant No. 18-29-03228). The researcher/Montaser Fekry is funded by a PhD scholarship from the Ministry of Higher Education of the Arab Republic of Egypt and the Russian Government Scholarship with application No: EGY-6154/17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Montaser Fekry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lychev, S.A., Fekry, M. (2023). Residual Stresses in a Thermo-viscoelastic Additively Manufactured Cylinder Subjected to Induction Heating. In: Indeitsev, D.A., Krivtsov, A.M. (eds) Advanced Problem in Mechanics III. APM 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-37246-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37246-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37245-2

  • Online ISBN: 978-3-031-37246-9

  • eBook Packages: EngineeringEngineering (R0)