Skip to main content

Translational Aspects in Living Mammalian Organisms

  • Chapter
  • First Online:
Surgical Research in Implant Dentistry

Abstract

Translational Research is considered a priority for the National Institutes of Health (NIH) and refers to the “bench-to-bedside” taking advantage of knowledge from basic sciences to produce new products, drugs, devices, and treatment possibilities for patients. The use of the preclinical “in vivo” model in scientific research remains a vital tool in improving our understanding of how biological systems work both in health and disease, and in the development of new medicines, treatments, and technologies. Underpinning this research is a strong commitment to maintaining a rigorous regulatory system that ensures that animal research is carried out only where no practicable alternative exists and under controls that keep suffering to a minimum. This is achieved through robustly applying the principles of the 3Rs (replacement, reduction, and refinement) to all research proposals involving the use of animals. In fact, the researcher must establish a series of points (ethics, bone anatomy, type of defect, etc.) before definitively deciding what animal to use as a model in implant dentistry. The main experimental models used in animal research in terms of implant therapy and applied to Translational Research are implant osseointegration process, immediate implant placement, peri-implantitis therapy, and bone regeneration around implants. It is important, however, to keep in mind that the results, as they stand, obtained from an animal trial, although translational, do not allow any direct correlations and conclusions concerning human situations or treatments to be drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dard M. Methods and interpretation of performance studies for dental implants. In: Boutrand J, editor. Biocompatibility and performance of medical devices. Hoboken: Wiley; 2012. p. 308–44.

    Chapter  Google Scholar 

  2. Woolf SH. The meaning of translational research and why it matters. JAMA. 2008;299(2):211–3. https://doi.org/10.1001/jama.2007.26.

    Article  PubMed  Google Scholar 

  3. Fontanarosa PB, DeAngelis CD. Basic science and translational research in JAMA. JAMA. 2002;287(13):1728. https://doi.org/10.1001/jama.287.13.1728.

    Article  PubMed  Google Scholar 

  4. Sung NS, Crowley WF Jr, Genel M, Salber P, Sandy L, Sherwood LM, Johnson SB, Catanese V, Tilson H, Getz K, Larson EL, Scheinberg D, Reece EA, Slavkin H, Dobs A, Grebb J, Martinez RA, Korn A, Rimoin D. Central challenges facing the national clinical research enterprise. JAMA. 2003;289(10):1278–87. https://doi.org/10.1001/jama.289.10.1278.

    Article  PubMed  Google Scholar 

  5. Cohrs RJ, Martin T, Ghahramani P, Bidaut L, Higgins PJ, Shahzad A. Translational medicine definition by the European Society for Translational Medicine. New Horiz Transl Med. 2015;2(3):86–8. https://doi.org/10.1016/j.nhtm.2014.12.002.

    Article  Google Scholar 

  6. Goldblatt EM, Lee W-H. From bench to bedside: the growing use of translational research in cáncer medicine. Am J Transl Res. 2010;2(1):1–18.

    PubMed  PubMed Central  Google Scholar 

  7. Chan JYH, Chang AYW, Chan SHH. New insights on brain stem death: from bedside to bench. Prog Neurobiol. 2005;77(6):396–425. https://doi.org/10.1016/j.pneurobio.2005.11.004.

    Article  PubMed  Google Scholar 

  8. U. S. Centers for Medicare @ Medicaid services. Patient Protection and Affordable Care Act (PPACA), Baltimore. 2010. https://www.healthcare.gov/glossary/patient-protection-and-affordable-care-act/. Accessed 3 Dec 2021.

  9. Chiappelli F, Kasar VR, Hwang JM, Cajulis OS. Translational dentistry: the new frontier in dental practice. Transl Biomed. 2015;6:4. https://doi.org/10.21767/2172-0479.100034.

    Article  Google Scholar 

  10. Chiappelli F. Fundamentals of evidence-based health care and translational science. Heidelberg: Springer; 2014. https://doi.org/10.1007/978-3-642-41857-0.

    Book  Google Scholar 

  11. Institute of Medicine. Initial national priorities for comparative effectiveness research. Washington, DC: The National Academies Press; 2009. https://doi.org/10.17226/12648.

    Book  Google Scholar 

  12. Chiappelli F. Methods, fallacies and mplications of comparative effectiveness research (CER) for healthcare in the 21st century. In: Chiappelli F, editor. Comparative Effectiveness Research (CER): new methods, challenges and health implications. New York: Nova Science; 2015.

    Google Scholar 

  13. Chiappelli F. Involving community dentists in evidence based dentistry: a hypothetical quest for the next frontier. Dent Hypotheses. 2015;6(4):127–8. https://doi.org/10.4103/2155-8213.170630.

    Article  Google Scholar 

  14. Lindhe J, Berglundh T, Ericsson I, Liljenberg B, Marinello C. Experimental breakdown of peri-implant and periodontal tissues. A study in the beagle dog. Clin Oral Implants Res. 1992;3(1):9–16. https://doi.org/10.1034/j.1600-0501.1992.030102.x.

    Article  PubMed  Google Scholar 

  15. Derks J, Schaller D, Håkansson J, Wennstrom JL, Tomasi C, Berglundh T. Peri-implantitis – onset and pattern of progression. J Clin Periodontol. 2016;43:383–8. https://doi.org/10.1111/jcpe.12535.

    Article  PubMed  Google Scholar 

  16. Leonhardt Å, Berglundh T, Ericsson I, Dahlen G. Putative periodontal and teeth in pathogens on titanium implants and teeth in experimental gingivitis and periodontitis in beagle dogs. Clin Oral Implants Res. 1992;3(3):112–9. https://doi.org/10.1034/j.1600-0501.1992.030303.x.

    Article  PubMed  Google Scholar 

  17. Paolantonio M, Dolci M, Scarano A, d’Archivio D, di Placido G, Tumini V, Piattelli A. Immediate implantation in fresh extraction sockets. A controlled clinical and histological study in man. J Periodontol. 2001;72:1560–71. https://doi.org/10.1902/jop.2001.72.11.1560.

    Article  PubMed  Google Scholar 

  18. Araújo MG, Lindhe J. Dimensional ridge alterations following tooth extraction. An experimental study in the dog. J Clin Periodontol. 2005;32(2):212–8. https://doi.org/10.1111/j.1600-051X.2005.00642.x.

    Article  PubMed  Google Scholar 

  19. Chen S, Buser D. Esthetic outcomes following immediate and early implant placement in the anterior maxilla—a systematic review. Int J Oral Maxillofac Implants. 2014;29(Suppl):186–215. https://doi.org/10.11607/jomi.2014suppl.g3.3.

    Article  PubMed  Google Scholar 

  20. Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG. Animal models for implant biomaterial research in bone: a review. Eur Cell Mater. 2007;13:1–10. https://doi.org/10.22203/ecm.v013a01.

    Article  PubMed  Google Scholar 

  21. Li Y, Chen SK, Li L, Qin L, Wang XL, Lai YX. Bone defect animal models for testing efficacy of bone substitute biomaterials. J Orthop Translat. 2015;3:95–104. https://doi.org/10.1016/j.jot.2015.05.002.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mendenhall HV. Animal selection. In: von Recum AF, editor. Handbook of biomaterials evaluation: scientific, technical and clinical testing of implant materials. Philadelphia: Taylor & Francis; 1999. p. 475–9.

    Google Scholar 

  23. Babuska V, Moztarzadeh O, Kubikova T, Moztarzadeh A, Hrusak D, Tonar Z. Evaluating the osseointegration of nanostructured titanium implants in animal models: current experimental methods and perspectives (review). Biointerphases. 2016;11(3):030801. https://doi.org/10.1116/1.4958793.

    Article  PubMed  Google Scholar 

  24. Katranji A, Misch K, Wang H. Cortical bone thickness in dentate and edentulous human cadavers. J Periodontol. 2007;78(5):874–8. https://doi.org/10.1902/jop.2007.060342.

    Article  PubMed  Google Scholar 

  25. Wang L, Wu Y, Perez KC, Hyman S, Brunski JB, Tulu U, Bao C, Salmon B, Helms JA. Effects of condensation on peri-implant bone density and remodeling. J Dent Res. 2017;96(4):413–20. https://doi.org/10.1177/0022034516683932.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Di Domenico M, D’apuzzo F, Feola A, Cito L, Monsurrò A, Pierantoni GM, Berrino L, De Rosa A, Polimeni A, Perillo L. Cytokines and VEGF induction in orthodontic movement in animal models. J Biomed Biotechnol. 2012;2012:201689. https://doi.org/10.1155/2012/201689.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu W, Dan X, Wang T, Lu WW, Pan H. A bone-implant interaction mouse model for evaluating molecular mechanism of biomaterials/bone interaction. Tissue Eng Part C Methods. 2016;22(11):1018–27. https://doi.org/10.1089/ten.TEC.2016.0250.

    Article  PubMed  Google Scholar 

  28. Wancket LM. Animal models for evaluation of bone implants and devices: comparative bone structure and common model uses. Vet Pathol. 2015;52(5):842–50. https://doi.org/10.1177/0300985815593124.

    Article  PubMed  Google Scholar 

  29. Corte GM, Plendl J, Hünigen H, Richardson KC, Gemeinhardt O, Niehues SM. Refining experimental dental implant testing in the Göttingen Minipig using 3D computed tomography. A morphometric study of the mandibular canal. PLoS One. 2017;12(9):e0184889. https://doi.org/10.1371/journal.pone.0184889.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Valbonetti L, Berardinelli P, Scarano A, Piatelli A, Mattioli M, Barboni B, Podaliri M, Muttini A. Translational value of sheep as animal model to study sinus augmentation. J Craniofac Surg. 2015;26:737–40. https://doi.org/10.1097/SCS.0000000000001785.

    Article  PubMed  Google Scholar 

  31. European Union. Directive 2010/63/EU of the European Parliament and of the Council on 22 September 2010 on the protection of animals used for scientific purposes. 2010. http://data.europa.eu/eli/dir/2010/63/oj. Accessed 5 Dec 2021.

  32. SCHEER (Scientific Committee on Health Environmental and Emerging Risks). Final opinion on the need for non-human primates in biomedical research, production and testing of products and devices. 2017. http://ec.europa.eu/environment/chemicals/lab_animals/pdf/Scheer_may2017.pdf.

  33. Nuremberg Code. U.S. Department of Health & Human Services. https://history.nih.gov/research/downloads/nuremberg.pdf.

  34. World Medical Association. Declaration of Helsinki. Ethical principles for medical research involving human subjects. 1964. https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/. Accessed 3 Dec 2021.

  35. Tannenbaum J, Bennett BT. Russell and Burch’s then and now: the need for clarify in definition and purpose. J Am Assoc Lab Anim Sci. 2015;54(2):120–32.

    PubMed  PubMed Central  Google Scholar 

  36. Singer P. Animal liberation: a new ethics for our treatment of animals. New York: Harper Collins; 1975.

    Google Scholar 

  37. Regan T. The case for animal rights. California: University of California Press; 1983.

    Google Scholar 

  38. Pitts NB, Drummond J, Guggenberger R, Ferrillo P, Johnston S. Incorporating new materials and techniques into clinical practice. Adv Dent Res. 2013;25(1):33–40. https://doi.org/10.1177/0022034513502209.

    Article  PubMed  Google Scholar 

  39. Dee KC, Puleo DA, Bizios R. An introduction to tissue-biomaterial interactions. Cambridge: Woodhead Publishers; 2002.

    Book  Google Scholar 

  40. National Research Council. Guide for the care and use of laboratory animals. The National Academies Press. 2011. http://nap.edu/12910. Accessed 5 Dec 2021.

  41. Berglundh T, Abrahamsson I, Lang NP, Lindhe J. De novo alveolar bone formation adjacent to endosseous implants. A model study in the dog. Clin Oral Implants Res. 2003;14:251–62. https://doi.org/10.1034/j.1600-0501.2003.00972.x.

    Article  PubMed  Google Scholar 

  42. Abrahamsson I, Berglundh T, Linder E, Lang NP, Lindhe J. Early bone formation adjacent to rough and turned endosseous implant surfaces. An experimental study in the dog. Clin Oral Implants Res. 2004;15:381–92. https://doi.org/10.1111/j.1600-0501.2004.01082.x.

    Article  PubMed  Google Scholar 

  43. Araujo MG, Sukekava F, Wennström JL, Lindhe J. Ridge alterations following implant placement in fresh extraction sockets: an experimental study in the dog. J Clin Periodontol. 2005;32:645–52. https://doi.org/10.1111/j.1600-051X.2005.00726.x.

    Article  PubMed  Google Scholar 

  44. Blanco J, Nuñez V, Aracil L, Muñoz F, Ramos I. Ridge alterations following immediate implant placement in the dog: flap versus flapless surgery. J Clin Periodontol. 2008;35:640–8. https://doi.org/10.1111/j.1600-051X.2008.01237.x.

    Article  PubMed  Google Scholar 

  45. Blanco J, Liñares A, Villaverde G, Perez J, Muñoz F. Flapless immediate implant placement with or without immediate loading. A histomorphometric study in beagle dog. J Clin Periodontol. 2010;37:937–42. https://doi.org/10.1111/j.1600-051X.2010.01608.x.

    Article  PubMed  Google Scholar 

  46. Blanco J, Liñares A, Perez J, Muñoz F. Ridge alterations following flapless immediate implant placement with or without immediate loading. Part II: a histometric study in the Beagle dog. J Clin Periodontol. 2011;38:762–70. https://doi.org/10.1111/j.1600-051X.2011.01747.x.

    Article  PubMed  Google Scholar 

  47. Caneva M, Salata LA, de Souza SS, Bressan E, Botticelli D, Lang NP. Hard tissue formation adjacent to implants of various size and configuration immediately placed into extraction sockets: an experimental study in dogs. Clin Oral Implants Res. 2010;21:885–90. https://doi.org/10.1111/j.1600-0501.2010.01931.x.

    Article  PubMed  Google Scholar 

  48. Araújo MG, Linder E, Lindhe J. Bio-Osss collagen in the buccal gap at immediate implants: a 6-month study in the dog. Clin Oral Implants Res. 2011;22:1–8. https://doi.org/10.1111/j.1600-0501.2010.01920.x.

    Article  PubMed  Google Scholar 

  49. Caneva M, Botticelli D, Vigano P, Morelli F, Rea M, Lang NP. Connective tissue grafts in conjunction with implants installed immediately into extraction sockets. An experimental study in dogs. Clin Oral Implants Res. 2013;24:50–6. https://doi.org/10.1111/j.1600-0501.2012.02450.x.

    Article  PubMed  Google Scholar 

  50. Sanz M, Lindhe J, Alcaraz J, Sanz-Sanchez I, Cecchinato D. The effect of placing a bone replacement graft in the gap at immediately placed implants: a randomized clinical trial. Clin Oral Implants Res. 2017;28:902–10. https://doi.org/10.1111/clr.12896.

    Article  PubMed  Google Scholar 

  51. Albouy J-P, Abrahamsson I, Persson LG, Berglundh T. Spontaneous progression of peri-implantitis at different types of implants. An experimental study in dogs. I: clinical and radiographic observations. Clin Oral Implants Res. 2008;19:997–1002. https://doi.org/10.1111/j.1600-0501.2008.01589.x.

    Article  PubMed  Google Scholar 

  52. Albouy J-P, Abrahamsson I, Persson LG, Berglundh T. Implant surface characteristics influence the outcome of treatment of peri-implantitis: an experimental study in dogs. J Clin Periodontol. 2011;38:58–64. https://doi.org/10.1111/j.1600-051X.2010.01631.x.

    Article  PubMed  Google Scholar 

  53. Albouy J-P, Abrahamsson I, Berglundh T. Spontaneous progression of experimental peri-implantitis at implants with different surface characteristics. An experimental study in dogs. J Clin Periodontol. 2012;39:182–7. https://doi.org/10.1111/j.1600-051X.2011.01820.x.

    Article  PubMed  Google Scholar 

  54. Dahlin C, Linde A, Gottlow J, Nyman S. Healing of bone defects by guided tissue regeneration. Plast Reconstr Surg. 1988;81(5):672–6. https://doi.org/10.1097/00006534-198805000-00004.

    Article  PubMed  Google Scholar 

  55. Mayfield L, Skoglund A, Nobréus N, Attström R. Clinical and radiographic evaluation, following delivery of fixed reconstructions, at GBR treated titanium fixtures. Clin Oral Implants Res. 1998;9:292–302. https://doi.org/10.1034/j.1600-0501.1998.090502.x.

    Article  PubMed  Google Scholar 

  56. Sanz-Sánchez I, Ortiz-Vigón A, Sanz-Martín I, Figuero E, Sanz M. Effectiveness of lateral bone augmentation on the alveolar crest dimension: a systematic review and meta-analysis. J Dent Res. 2015;9(Suppl):128S–42S. https://doi.org/10.1177/0022034515594780.

    Article  Google Scholar 

  57. Schwarz F, Sager M, Kadelka I, Ferrari D, Becker J. Influence of titanium implant surface characteristics on bone regeneration in dehiscence-type defects: an experimental study in dogs. J Clin Periodontol. 2010;37(5):466–73. https://doi.org/10.1111/j.1600-051X.2010.01533.x.

    Article  PubMed  Google Scholar 

  58. Zambon R, Mardas N, Horvath A, Petrie A, Dard M, Donos N. The effect of loading in regenerated bone in dehiscence defects following a combined approach of bone grafting and GBR. Clin Oral Implants Res. 2012;23:591–601. https://doi.org/10.1111/j.1600-0501.2011.02279.x.

    Article  PubMed  Google Scholar 

  59. WHO (World Health Organization). Handbook: good laboratory practice (GLP). 2009. https://www.who.int/tdr/publications/training-guideline-publications/good-laboratory-practice-handbook/en. Accessed 3 Dec 2021.

  60. European Medicines Agency. ICH harmonised guideline integrated addendum to ICH E6(R2): guideline for good clinical practice. 2021. https://www.ema.europa.eu/en/ich-e6-r2-good-clinical-practice. Accessed 3 Dec 2021.

  61. WHO (World Health Organization). Good clinical laboratory practice (GCLP). 2009. https://www.who.int/tdr/publications/documents/gclp-web.pdf. Accessed 3 Dec 2021.

  62. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8(6):e1000412. https://doi.org/10.1371/journal.pbio.1000412.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Pellegrini G, Seol YJ, Gruber R, Giannobile WV. Pre-clinical models for oral and periodontal reconstructive therapies. J Dent Res. 2009;88(12):1065–76. https://doi.org/10.1177/0022034509349748.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Perel P, Roberts I, Sena E, Wheble P, Briscoe C, Sandercock P, Macleod M, Mignini LE, Jayaram P, Khan KS. Comparison of treatment effects between animal experiments and clinical trials: systematic review. BMJ. 2007;334(7586):197. https://doi.org/10.1136/bmj.39048.407928.BE.

    Article  PubMed  Google Scholar 

  65. Sah R, Ratcliffe A. Translational models for musculoskeletal tissue engineering and regenerative medicine. Tissue Eng Part B Rev. 2010;16(1):1–3. https://doi.org/10.1089/ten.TEB.2009.0726.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Contopoulos-Ioannidis DG, Ntzani E, Ioannidis JP. Translation of highly promising basic science. Research into clinical applications. Am J Med. 2003;114(6):477–84. https://doi.org/10.1016/s0002-9343(03)00013-5.

    Article  PubMed  Google Scholar 

  67. Contopoulos-Ioannidis DG, Alexiou GA, Gouvias TC, Ioannidis JP. Medicine. Life cycle of translational research for medical interventions. Science. 2008;321(5894):1298–9. https://doi.org/10.1126/science.1160622.

    Article  PubMed  Google Scholar 

  68. McNamee LM, Walsh MJ, Ledley FD. Timelines of translational science: From technology initiation to FDA approval. PLoS One. 2017;12(5):e0177371. https://doi.org/10.1371/journal.pone.0177371.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Blanco-Carrion .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blanco-Carrion, J., Liñares, A., Muñoz, F. (2023). Translational Aspects in Living Mammalian Organisms. In: Dard, M.M. (eds) Surgical Research in Implant Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-031-37234-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37234-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37233-9

  • Online ISBN: 978-3-031-37234-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics