Skip to main content

Computer-Assisted Implant Dentistry

  • Chapter
  • First Online:
Surgical Research in Implant Dentistry

Abstract

Technological developments have allowed a paradigm shift from manual and more classical dentistry practice to computer-assisted concepts and digital technologies use in daily practice. The integration of these technological systems in the field of implant dentistry should be patient-centered, effectiveness-focused, and evidence-based.

The hierarchical structure of research designs has become increasingly popular today, positioning designs in terms of their clinical relevance in which the level of evidence can be expressed through different systems,

For this purpose, studies in new emerging digital technologies should satisfy the fundamental standards of methodology, design, and data analysis to decrease the risk of research bias with systematic, random, or inferential errors.

The aim of this chapter is to review the most frequently adopted methods for evaluating digital technologies used in implant dentistry. Moreover, the different methodological designs used in vitro, in vivo, and clinical studies will be discussed, and guidelines proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Joda T, Bornstein MM, Jung RE, Ferrari M, Waltimo T, Zitzmann NU. Recent trends and future direction of dental research in the digital era. Int J Environ Res Public Health. 2020;17(6):1987. https://doi.org/10.3390/ijerph17061987.

    Article  PubMed  PubMed Central  Google Scholar 

  2. ISO 12836:2015: dentistry—Digitizing devices for CAD/CAM systems for indirect dental restorations—Test methods for assessing accuracy. Switzerland: ISO Copyright Office; 2015.

    Google Scholar 

  3. Alghazzawi TF. Advancements in CAD/CAM technology: options for practical implementation. J Prosthodont Res. 2016;60(2):72–84. https://doi.org/10.1016/j.jpor.2016.01.003.

    Article  PubMed  Google Scholar 

  4. Jokstad A. Computer-assisted technologies used in oral rehabilitation and the clinical documentation of alleged advantages - a systematic review. J Oral Rehabil. 2017;44(4):261–90. https://doi.org/10.1111/joor.12483.

    Article  PubMed  Google Scholar 

  5. Tahmaseb A, Wismeijer D, Coucke W, Derksen W. Computer technology applications in surgical implant dentistry: a systematic review. Int J Oral Maxillofac Implants. 2014;29(Suppl):25–42. https://doi.org/10.11607/jomi.2014suppl.g1.2.

    Article  PubMed  Google Scholar 

  6. Unkovskiy A, Unkovskiy N, Spintzyk S. A virtual patient concept for esthetic and functional rehabilitation in a fully digital workflow. Int J Comput Dent. 2021;24(4):405–17. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/34931776.

    PubMed  Google Scholar 

  7. Vercruyssen M, Laleman I, Jacobs R, Quirynen M. Computer-supported implant planning and guided surgery: a narrative review. Clin Oral Implants Res. 2015;26(Suppl 11):69–76. https://doi.org/10.1111/clr.12638.

    Article  PubMed  Google Scholar 

  8. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, et al. Search for displaced supersymmetry in events with an electron and a muon with large impact parameters. Phys Rev Lett. 2015;114(6):061801. https://doi.org/10.1103/PhysRevLett.114.061801.

    Article  PubMed  Google Scholar 

  9. Vercruyssen M, Hultin M, Van Assche N, Svensson K, Naert I, Quirynen M. Guided surgery: accuracy and efficacy. Periodontol 2000. 2014;66(1):228–46. https://doi.org/10.1111/prd.12046.

    Article  PubMed  Google Scholar 

  10. Afshari FS, Sukotjo C, Alfaro MF, McCombs J, Campbell SD, Knoernschild KL, Yuan JC. Integration of digital dentistry into a predoctoral implant program: program description, rationale, and utilization trends. J Dent Educ. 2017;81(8):986–94. https://doi.org/10.21815/JDE.017.050.

    Article  PubMed  Google Scholar 

  11. Brownstein SA, Murad A, Hunt RJ. Implementation of new technologies in U.S. dental school curricula. J Dent Educ. 2015;79(3):259–64. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25729019.

    Article  PubMed  Google Scholar 

  12. Douglas RD, Hopp CD, Augustin MA. Dental students’ preferences and performance in crown design: conventional wax-added versus CAD. J Dent Educ. 2014;78(12):1663–72. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25480282.

    Article  PubMed  Google Scholar 

  13. Papaspyridakos P, Chen CJ, Chuang SK, Weber HP. Implant loading protocols for edentulous patients with fixed prostheses: a systematic review and meta-analysis. Int J Oral Maxillofac Implants. 2014;29(Suppl):256–70. https://doi.org/10.11607/jomi.2014suppl.g4.3.

    Article  PubMed  Google Scholar 

  14. ISO 18739: dentistry — Vocabulary of process chain for CAD/CAM systems.. Switzerland: ISO Copyright Office; 2016.

    Google Scholar 

  15. ISO/TR 18845 : dentistry — Test methods for machining accuracy of computer- aided milling machines. Switzerland: ISO Copyright Office; 2017.

    Google Scholar 

  16. ISO 5725-1: accuracy (trueness and precision) of measurement methods and results — Part 1: general principles and definitions. Switzerland: ISO Copyright Office; 1994.

    Google Scholar 

  17. Aragon ML, Pontes LF, Bichara LM, Flores-Mir C, Normando D. Validity and reliability of intraoral scanners compared to conventional gypsum models measurements: a systematic review. Eur J Orthod. 2016;38(4):429–34. https://doi.org/10.1093/ejo/cjw033.

    Article  PubMed  Google Scholar 

  18. D’Haese J, Van De Velde T, Komiyama A, Hultin M, De Bruyn H. Accuracy and complications using computer-designed stereolithographic surgical guides for oral rehabilitation by means of dental implants: a review of the literature. Clin Implant Dent Relat Res. 2012;14(3):321–35. https://doi.org/10.1111/j.1708-8208.2010.00275.x.

    Article  PubMed  Google Scholar 

  19. Haralur SB, Saad Toman M, Ali Al-Shahrani A, Ali Al-Qarni A. Accuracy of multiple pour cast from various elastomer impression methods. Int J Dent. 2016;2016:7414737. https://doi.org/10.1155/2016/7414737.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hoyos A, Soderholm KJ. Influence of tray rigidity and impression technique on accuracy of polyvinyl siloxane impressions. Int J Prosthodont. 2011;24(1):49–54. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21210004.

    PubMed  Google Scholar 

  21. Jamshidy L, Mozaffari HR, Faraji P, Sharifi R. Accuracy of the one-stage and two-stage impression techniques: a comparative analysis. Int J Dent. 2016;2016:7256496. https://doi.org/10.1155/2016/7256496.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Amin S, Weber HP, Finkelman M, El Rafie K, Kudara Y, Papaspyridakos P. Digital vs. conventional full-arch implant impressions: a comparative study. Clin Oral Implants Res. 2016. https://doi.org/10.1111/clr.12994

  23. da Silva Marques DN, Aparicio Aguiar Alves RV, Marques Pinto RJ, Bartolo Carames JR, de Oliveira Francisco HC, Mendez Carames JM. Facial scanner accuracy with different superimposition methods - In vivo study. Int J Prosthodont. 2021;34(5):578–84. https://doi.org/10.11607/ijp.7253.

    Article  PubMed  Google Scholar 

  24. Ender A, Mehl A. Accuracy in dental medicine, a new way to measure trueness and precision. J Vis Exp. 2014;(86):51374. https://doi.org/10.3791/51374.

  25. Mack S, Bonilla T, English JD, Cozad B, Akyalcin S. Accuracy of 3-dimensional curvilinear measurements on digital models with intraoral scanners. Am J Orthod Dentofacial Orthop. 2017;152(3):420–5. https://doi.org/10.1016/j.ajodo.2017.05.011.

    Article  PubMed  Google Scholar 

  26. da Silva Marques DN, Marques Pinto RJ, Alves R, Baratieri LN, da Mata A, Carames JMM. Soft tissue replication in single unit implant impressions-A three dimensional clinical study. J Esthet Restor Dent. 2019;31(4):359–68. https://doi.org/10.1111/jerd.12481.

    Article  PubMed  Google Scholar 

  27. Goracci C, Franchi L, Vichi A, Ferrari M. Accuracy, reliability, and efficiency of intraoral scanners for full-arch impressions: a systematic review of the clinical evidence. Eur J Orthod. 2016;38(4):422–8. https://doi.org/10.1093/ejo/cjv077.

    Article  PubMed  Google Scholar 

  28. Kuhr F, Schmidt A, Rehmann P, Wostmann B. A new method for assessing the accuracy of full arch impressions in patients. J Dent. 2016;55:68–74. https://doi.org/10.1016/j.jdent.2016.10.002.

    Article  PubMed  Google Scholar 

  29. Chiappelli F. Fundamentals of evidence-based health care and translational science. Heidelberg: Springer-Verlag; 2014.

    Book  Google Scholar 

  30. Barkhordarian A, Pellionisz P, Dousti M, Lam V, Gleason L, Dousti M, et al. Assessment of risk of bias in translational science. J Transl Med. 2013;11:184. https://doi.org/10.1186/1479-5876-11-184.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lohr KN, Carey TS. Assessing “best evidence”: issues in grading the quality of studies for systematic reviews. Jt Comm J Qual Improv. 1999;25(9):470–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10481816.

    PubMed  Google Scholar 

  32. Faggion CM Jr. Animal research as a basis for clinical trials. Eur J Oral Sci. 2015;123(2):61–4. https://doi.org/10.1111/eos.12175.

    Article  PubMed  Google Scholar 

  33. Festing MF, Altman DG. Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J. 2002;43(4):244–58. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12391400.

    Article  PubMed  Google Scholar 

  34. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8(6):e1000412. https://doi.org/10.1371/journal.pbio.1000412.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Thoma DS, Martin IS, Muhlemann S, Jung RE. Systematic review of pre-clinical models assessing implant integration in locally compromised sites and/or systemically compromised animals. J Clin Periodontol. 2012;39(Suppl 12):37–62. https://doi.org/10.1111/j.1600-051X.2011.01833.x.

    Article  PubMed  Google Scholar 

  36. Moher D, Hopewell S, Schulz KF, Montori V, Gotzsche PC, Devereaux PJ, et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c869. https://doi.org/10.1136/bmj.c869.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Noah N. The STROBE initiative: STrengthening the Reporting of OBservational studies in Epidemiology (STROBE). Epidemiol Infect. 2008;136(7):865. https://doi.org/10.1017/S0950268808000733.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rogozinska E, Khan K. Grading evidence from test accuracy studies: what makes it challenging compared with the grading of effectiveness studies? Evid Based Med. 2017;22(3):81–4. https://doi.org/10.1136/ebmed-2017-110717.

    Article  PubMed  Google Scholar 

  39. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ. 2015;351:h5527. https://doi.org/10.1136/bmj.h5527.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535. https://doi.org/10.1136/bmj.b2535.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Whiting P, Savovic J, Higgins JP, Caldwell DM, Reeves BC, Shea B, et al. ROBIS: a new tool to assess risk of bias in systematic reviews was developed. J Clin Epidemiol. 2016;69:225–34. https://doi.org/10.1016/j.jclinepi.2015.06.005.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sarkis-Onofre R, Cenci MS, Demarco FF, Lynch CD, Fleming PS, Pereira-Cenci T, Moher D. Use of guidelines to improve the quality and transparency of reporting oral health research. J Dent. 2015;43(4):397–404. https://doi.org/10.1016/j.jdent.2015.01.006.

    Article  PubMed  Google Scholar 

  43. Han S, Olonisakin TF, Pribis JP, Zupetic J, Yoon JH, Holleran KM, et al. A checklist is associated with increased quality of reporting preclinical biomedical research: a systematic review. PLoS One. 2017;12(9):e0183591. https://doi.org/10.1371/journal.pone.0183591.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hopewell S, Dutton S, Yu LM, Chan AW, Altman DG. The quality of reports of randomised trials in 2000 and 2006: comparative study of articles indexed in PubMed. BMJ. 2010;340:c723. https://doi.org/10.1136/bmj.c723.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Leow NM, Hussain Z, Petrie A, Donos N, Needleman IG. Has the quality of reporting in periodontology changed in 14 years? A systematic review. J Clin Periodontol. 2016;43(10):833–8. https://doi.org/10.1111/jcpe.12572.

    Article  PubMed  Google Scholar 

  46. Tonetti M, Palmer R, Working Group 2 of the VIII European Workshop on Periodontology. Clinical research in implant dentistry: study design, reporting and outcome measurements: consensus report of Working Group 2 of the VIII European Workshop on Periodontology. J Clin Periodontol. 2012;39(Suppl 12):73–80. https://doi.org/10.1111/j.1600-051X.2011.01843.x.

    Article  PubMed  Google Scholar 

  47. Turner L, Shamseer L, Altman DG, Weeks L, Peters J, Kober T, et al. Consolidated standards of reporting trials (CONSORT) and the completeness of reporting of randomised controlled trials (RCTs) published in medical journals. Cochrane Database Syst Rev. 2012;11:MR000030. https://doi.org/10.1002/14651858.MR000030.pub2.

    Article  PubMed  Google Scholar 

  48. Faggion CM Jr. Guidelines for reporting pre-clinical in vitro studies on dental materials. J Evid Based Dent Pract. 2012;12(4):182–9. https://doi.org/10.1016/j.jebdp.2012.10.001.

    Article  PubMed  Google Scholar 

  49. Krithikadatta J, Gopikrishna V, Datta M. CRIS Guidelines (Checklist for Reporting In-vitro Studies): a concept note on the need for standardized guidelines for improving quality and transparency in reporting in-vitro studies in experimental dental research. J Conserv Dent. 2014;17(4):301–4. https://doi.org/10.4103/0972-0707.136338.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Nagendrababu V, Murray PE, Ordinola-Zapata R, Peters OA, Rocas IN, Siqueira JF Jr, et al. PRILE 2021 guidelines for reporting laboratory studies in Endodontology: a consensus-based development. Int Endod J. 2021;54(9):1482–90. https://doi.org/10.1111/iej.13542.

    Article  PubMed  Google Scholar 

  51. Langland OE, Langlasis R, Preece JW. Principles of dental imaging, In: Goucher J, editor, 2nd ed. Lippincott Williams & Wilkins; 2002.

    Google Scholar 

  52. Cotti E, Vargiu P, Dettori C, Mallarini G. Computerized tomography in the management and follow-up of extensive periapical lesion. Endod Dent Traumatol. 1999;15(4):186–9. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/10815569.

    Article  PubMed  Google Scholar 

  53. Patel S, Dawood A, Whaites E, Pitt Ford T. New dimensions in endodontic imaging: part 1. Conventional and alternative radiographic systems. Int Endod J. 2009;42(6):447–62. https://doi.org/10.1111/j.1365-2591.2008.01530.x.

    Article  PubMed  Google Scholar 

  54. Benavides E, Rios HF, Ganz SD, An CH, Resnik R, Reardon GT, et al. Use of cone beam computed tomography in implant dentistry: the International Congress of Oral Implantologists consensus report. Implant Dent. 2012;21(2):78–86. https://doi.org/10.1097/ID.0b013e31824885b5.

    Article  PubMed  Google Scholar 

  55. Harris D, Horner K, Grondahl K, Jacobs R, Helmrot E, Benic GI, et al. E.A.O. guidelines for the use of diagnostic imaging in implant dentistry 2011. A consensus workshop organized by the European Association for Osseointegration at the Medical University of Warsaw. Clin Oral Implants Res. 2012;23(11):1243–53. https://doi.org/10.1111/j.1600-0501.2012.02441.x.

    Article  PubMed  Google Scholar 

  56. Rios HF, Borgnakke WS, Benavides E. The use of cone-beam computed tomography in management of patients requiring dental implants: an american academy of periodontology best evidence review. J Periodontol. 2017;88(10):946–59. https://doi.org/10.1902/jop.2017.160548.

    Article  PubMed  Google Scholar 

  57. Tyndall DA, Price JB, Tetradis S, Ganz SD, Hildebolt C, Scarfe WC, et al. Position statement of the American Academy of Oral and Maxillofacial Radiology on selection criteria for the use of radiology in dental implantology with emphasis on cone beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113(6):817–26. https://doi.org/10.1016/j.oooo.2012.03.005.

    Article  PubMed  Google Scholar 

  58. Al-Rawi B, Hassan B, Vandenberge B, Jacobs R. Accuracy assessment of three-dimensional surface reconstructions of teeth from cone beam computed tomography scans. J Oral Rehabil. 2010;37(5):352–8. https://doi.org/10.1111/j.1365-2842.2010.02065.x.

    Article  PubMed  Google Scholar 

  59. Spin-Neto R, Gotfredsen E, Wenzel A. Impact of voxel size variation on CBCT-based diagnostic outcome in dentistry: a systematic review. J Digit Imaging. 2013;26(4):813–20. https://doi.org/10.1007/s10278-012-9562-7.

    Article  PubMed  Google Scholar 

  60. Freedman LS. Evaluating and comparing imaging techniques: a review and classification of study designs. Br J Radiol. 1987;60(719):1071–81. https://doi.org/10.1259/0007-1285-60-719-1071.

    Article  PubMed  Google Scholar 

  61. Guyatt GH, Tugwell PX, Feeny DH, Haynes RB, Drummond M. A framework for clinical evaluation of diagnostic technologies. CMAJ. 1986;134(6):587–94. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/3512062.

    PubMed  PubMed Central  Google Scholar 

  62. Hunink MG. Outcomes research and cost-effectiveness analysis in radiology. Eur J Radiol. 1998;27(2):85–7. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/9639132.

    PubMed  Google Scholar 

  63. van der Schouw YT, Verbeek AL, Ruijs SH. Guidelines for the assessment of new diagnostic tests. Invest Radiol. 1995;30(6):334–40. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/7490184.

    Article  PubMed  Google Scholar 

  64. Hunink MG, Krestin GP. Study design for concurrent development, assessment, and implementation of new diagnostic imaging technology. Radiology. 2002;222(3):604–14. https://doi.org/10.1148/radiol.2223010335.

    Article  PubMed  Google Scholar 

  65. Ferrante di Ruffano L, Dinnes J, Taylor-Phillips S, Davenport C, Hyde C, Deeks JJ. Research waste in diagnostic trials: a methods review evaluating the reporting of test-treatment interventions. BMC Med Res Methodol. 2017;17(1):32. https://doi.org/10.1186/s12874-016-0286-0.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hot A, Bossuyt PM, Gerke O, Wahl S, Vach W, Zapf A. Randomized test-treatment studies with an outlook on adaptive designs. BMC Med Res Methodol. 2021;21(1):110. https://doi.org/10.1186/s12874-021-01293-y.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Begg CB. Biases in the assessment of diagnostic tests. Stat Med. 1987;6(4):411–23. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/3114858.

    Article  PubMed  Google Scholar 

  68. Begg CB, McNeil BJ. Assessment of radiologic tests: control of bias and other design considerations. Radiology. 1988;167(2):565–9. https://doi.org/10.1148/radiology.167.2.3357976.

    Article  PubMed  Google Scholar 

  69. SEDENTEXCT. Radiation protection: cone beam CT for dental and maxillofacial radiology (Evidence Based Guidelines). 2012.

    Google Scholar 

  70. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP. 2007;37(2–4):1–332. https://doi.org/10.1016/j.icrp.2007.10.003.

  71. de Las Heras Gala H, Torresin A, Dasu A, Rampado O, Delis H, Hernández Girón I, Theodorakou C, Andersson J, Holroyd J, Nilsson M, Edyvean S, Gershan V, Hadid-Beurrier L, Hoog C, Delpon G, Sancho Kolster I, Peterlin P, Garayoa Roca J, Caprile P, Zervides C. Quality control in cone-bem computed tomography (CBCT). In: E-E-I. protocol, editor. 2017.

    Google Scholar 

  72. de Las Heras Gala H, Torresin A, Dasu A, Rampado O, Delis H, Hernandez Giron I, et al. Quality control in cone-beam computed tomography (CBCT) EFOMP-ESTRO-IAEA protocol (summary report). Phys Med. 2017;39:67–72. https://doi.org/10.1016/j.ejmp.2017.05.069.

    Article  Google Scholar 

  73. Grobe A, Semmusch J, Schollchen M, Hanken H, Hahn M, Eichhorn W, et al. Accuracy of bone measurements in the vicinity of titanium implants in CBCT data sets: a comparison of radiological and histological findings in minipigs. Biomed Res Int. 2017;2017:3848207. https://doi.org/10.1155/2017/3848207.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Min S, Kim T, Kim O, Goncalo C, Utsunomiya T, Matsumoto T, et al. Functionalized scaffold and barrier membrane with anti-BMP-2 monoclonal antibodies for alveolar ridge preservation in a canine model. Biomed Res Int. 2020;2020:6153724. https://doi.org/10.1155/2020/6153724.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Omran M, Min S, Abdelhamid A, Liu Y, Zadeh HH. Alveolar ridge dimensional changes following ridge preservation procedure: part-2 - CBCT 3D analysis in non-human primate model. Clin Oral Implants Res. 2016;27(7):859–66. https://doi.org/10.1111/clr.12701.

    Article  PubMed  Google Scholar 

  76. Ritter L, Elger MC, Rothamel D, Fienitz T, Zinser M, Schwarz F, Zoller JE. Accuracy of peri-implant bone evaluation using cone beam CT, digital intra-oral radiographs and histology. Dentomaxillofac Radiol. 2014;43(6):20130088. https://doi.org/10.1259/dmfr.20130088.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Stimmelmayr M, Denk K, Erdelt K, Krennmair G, Mansour S, Beuer F, Guth JF. Accuracy and reproducibility of four cone beam computed tomography devices using 3D implant-planning software. Int J Comput Dent. 2017;20(1):21–34. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28294203.

    PubMed  Google Scholar 

  78. Faria PE, Okamoto R, Bonilha-Neto RM, Xavier SP, Santos AC, Salata LA. Immunohistochemical, tomographic and histological study on onlay iliac grafts remodeling. Clin Oral Implants Res. 2008;19(4):393–401. https://doi.org/10.1111/j.1600-0501.2007.01485.x.

    Article  PubMed  Google Scholar 

  79. Min S, Liu Y, Tang J, Xie Y, Xiong J, You HK, Zadeh HH. Alveolar ridge dimensional changes following ridge preservation procedure with novel devices: part 1--CBCT linear analysis in non-human primate model. Clin Oral Implants Res. 2016;27(1):97–105. https://doi.org/10.1111/clr.12521.

    Article  PubMed  Google Scholar 

  80. Sbordone C, Sbordone L, Toti P, Martuscelli R, Califano L, Guidetti F. Volume changes of grafted autogenous bone in sinus augmentation procedure. J Oral Maxillofac Surg. 2011;69(6):1633–41. https://doi.org/10.1016/j.joms.2010.12.004.

    Article  PubMed  Google Scholar 

  81. Uchida Y, Goto M, Katsuki T, Soejima Y. Measurement of maxillary sinus volume using computerized tomographic images. Int J Oral Maxillofac Implants. 1998;13(6):811–8. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/9857592.

    PubMed  Google Scholar 

  82. Deluiz D, Oliveira LS, Fletcher P, Pires FR, Tinoco JM, Tinoco EM. Histologic and tomographic findings of bone block allografts in a 4 years follow-up: a case series. Braz Dent J. 2016;27(6):775–80. https://doi.org/10.1590/0103-6440201601100.

    Article  PubMed  Google Scholar 

  83. Shi JY, Li Y, Zhuang LF, Zhang X, Fan LF, Lai HC. Accuracy assessment of a novel semiautomatic method evaluating bone grafts around the dental implant: an in vitro and ex vivo study. Sci Rep. 2020;10(1):14902. https://doi.org/10.1038/s41598-020-71651-1.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Xie Y, Su Y, Min S, Tang J, Goh BT, Saigo L, et al. Collagen sponge functionalized with chimeric anti-BMP-2 monoclonal antibody mediates repair of critical-size mandibular continuity defects in a nonhuman primate model. Biomed Res Int. 2017;2017:8094152. https://doi.org/10.1155/2017/8094152.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Pauwels R, Jacobs R, Singer SR, Mupparapu M. CBCT-based bone quality assessment: are Hounsfield units applicable? Dentomaxillofac Radiol. 2015;44(1):20140238. https://doi.org/10.1259/dmfr.20140238.

    Article  PubMed  Google Scholar 

  86. de Oliveira MA, Asahi DA, Silveira CA, Lima LA, Glick M, Gallottini M. The effects of zoledronic acid and dexamethasone on osseointegration of endosseous implants: histological and histomorphometrical evaluation in rats. Clin Oral Implants Res. 2015;26(4):e17–21. https://doi.org/10.1111/clr.12335.

    Article  PubMed  Google Scholar 

  87. Vercruyssen M, van de Wiele G, Teughels W, Naert I, Jacobs R, Quirynen M. Implant- and patient-centred outcomes of guided surgery, a 1-year follow-up: an RCT comparing guided surgery with conventional implant placement. J Clin Periodontol. 2014;41(12):1154–60. https://doi.org/10.1111/jcpe.12305.

    Article  PubMed  Google Scholar 

  88. Vercruyssen M, Cox C, Naert I, Jacobs R, Teughels W, Quirynen M. Accuracy and patient-centered outcome variables in guided implant surgery: a RCT comparing immediate with delayed loading. Clin Oral Implants Res. 2016;27(4):427–32. https://doi.org/10.1111/clr.12583.

    Article  PubMed  Google Scholar 

  89. Li Q, Bi M, Yang K, Liu W. The creation of a virtual dental patient with dynamic occlusion and its application in esthetic dentistry. J Prosthet Dent. 2021;126(1):14–8. https://doi.org/10.1016/j.prosdent.2020.08.026.

    Article  PubMed  Google Scholar 

  90. Benic GI, Sancho-Puchades M, Jung RE, Deyhle H, Hammerle CH. In vitro assessment of artifacts induced by titanium dental implants in cone beam computed tomography. Clin Oral Implants Res. 2013;24(4):378–83. https://doi.org/10.1111/clr.12048.

    Article  PubMed  Google Scholar 

  91. Bohner LOL, Tortamano P, Marotti J. Accuracy of linear measurements around dental implants by means of cone beam computed tomography with different exposure parameters. Dentomaxillofac Radiol. 2017;46(5):20160377. https://doi.org/10.1259/dmfr.20160377.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Schulze R, Heil U, Gross D, Bruellmann DD, Dranischnikow E, Schwanecke U, Schoemer E. Artefacts in CBCT: a review. Dentomaxillofac Radiol. 2011;40(5):265–73. https://doi.org/10.1259/dmfr/30642039.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Baan F, Bruggink R, Nijsink J, Maal TJJ, Ongkosuwito EM. Fusion of intra-oral scans in cone-beam computed tomography scans. Clin Oral Investig. 2021;25(1):77–85. https://doi.org/10.1007/s00784-020-03336-y.

    Article  PubMed  Google Scholar 

  94. Hammerle CH, Cordaro L, van Assche N, Benic GI, Bornstein M, Gamper F, et al. Digital technologies to support planning, treatment, and fabrication processes and outcome assessments in implant dentistry. Summary and consensus statements. The 4th EAO consensus conference 2015. Clin Oral Implants Res. 2015;26(Suppl 11):97–101. https://doi.org/10.1111/clr.12648.

    Article  PubMed  Google Scholar 

  95. Denissen H, Dozic A, van der Zel J, van Waas M. Marginal fit and short-term clinical performance of porcelain-veneered CICERO, CEREC, and Procera onlays. J Prosthet Dent. 2000;84(5):506–13. https://doi.org/10.1067/mpr.2000.110258.

    Article  PubMed  Google Scholar 

  96. Jemt T, Lie A. Accuracy of implant-supported prostheses in the edentulous jaw: analysis of precision of fit between cast gold-alloy frameworks and master casts by means of a three-dimensional photogrammetric technique. Clin Oral Implants Res. 1995;6(3):172–80. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/7578793.

    Article  PubMed  Google Scholar 

  97. van der Zel JM, Vlaar S, de Ruiter WJ, Davidson C. The CICERO system for CAD/CAM fabrication of full-ceramic crowns. J Prosthet Dent. 2001;85(3):261–7. https://doi.org/10.1067/mpr.2001.114399.

    Article  PubMed  Google Scholar 

  98. Gomes RS, Souza CMC, Bergamo ETP, Bordin D, Del Bel Cury AA. Misfit and fracture load of implant-supported monolithic crowns in zirconia-reinforced lithium silicate. J Appl Oral Sci. 2017;25(3):282–9. https://doi.org/10.1590/1678-7757-2016-0233.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kim TG, Kim S, Choi H, Lee JH, Kim JH, Moon HS. Clinical acceptability of the internal gap of CAD/CAM PD-AG crowns using intraoral digital impressions. Biomed Res Int. 2016;2016:7065454. https://doi.org/10.1155/2016/7065454.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Park JS, Lim YJ, Kim B, Kim MJ, Kwon HB. Clinical evaluation of time efficiency and fit accuracy of lithium disilicate single crowns between conventional and digital impression. Materials (Basel). 2020;13(23). https://doi.org/10.3390/ma13235467

  101. Ramalho IS, Bergamo ETP, Witek L, Coelho PG, Lopes ACO, Bonfante EA. Implant-abutment fit influences the mechanical performance of single-crown prostheses. J Mech Behav Biomed Mater. 2020;102:103506. https://doi.org/10.1016/j.jmbbm.2019.103506.

    Article  PubMed  Google Scholar 

  102. Schlenz MA, Vogler J, Schmidt A, Rehmann P, Wostmann B. New intraoral scanner-based chairside measurement method to investigate the internal fit of crowns: a clinical trial. Int J Environ Res Public Health. 2020;17(7):2182. https://doi.org/10.3390/ijerph17072182.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Ender A, Mehl A. Full arch scans: conventional versus digital impressions--an in-vitro study. Int J Comput Dent. 2011;14(1):11–21. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/21657122.

    PubMed  Google Scholar 

  104. ISO 5725-2: accuracy (trueness and precision) of measurement methods and results — Part 2: basic method for the determination of repeatability and reproducibility of a standard measurement method. Switzerland: ISO Copyright Office; 1994.

    Google Scholar 

  105. Amin S, Weber HP, Finkelman M, El Rafie K, Kudara Y, Papaspyridakos P. Digital vs. conventional full-arch implant impressions: a comparative study. Clin Oral Implants Res. 2017;28(11):1360–7. https://doi.org/10.1111/clr.12994.

    Article  PubMed  Google Scholar 

  106. Kim MK, Kim JM, Lee YM, Lim YJ, Lee SP. The effect of scanning distance on the accuracy of intra-oral scanners used in dentistry. Clin Anat. 2019;32(3):430–8. https://doi.org/10.1002/ca.23334.

    Article  PubMed  Google Scholar 

  107. Sim JY, Jang Y, Kim WC, Kim HY, Lee DH, Kim JH. Comparing the accuracy (trueness and precision) of models of fixed dental prostheses fabricated by digital and conventional workflows. J Prosthodont Res. 2019;63(1):25–30. https://doi.org/10.1016/j.jpor.2018.02.002.

    Article  PubMed  Google Scholar 

  108. Jokstad A. Accuracy of digital appliances for use in dentistry for dummies. Clin Exp Dent Res. 2017;3:43–4.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Fernandes MP, Pinto R, Almeida P, Marques D, Fernandes J, Figueiral M. Determinação da exatidão da aquisição de impressões dentárias com um scanner extraoral. Rev Port Estomatol Med Dent Cir Maxilofac. 2019;60. https://doi.org/10.24873/j.rpemd.2019.12.609.

  110. Mendricky R. Determination of measurement accuracy of optical 3D scanners. MM Sci J. 2016;2016(06):1565–72. https://doi.org/10.17973/MMSJ.2016_12_2016183.

    Article  Google Scholar 

  111. Guth JF, Edelhoff D, Schweiger J, Keul C. A new method for the evaluation of the accuracy of full-arch digital impressions in vitro. Clin Oral Investig. 2016;20(7):1487–94. https://doi.org/10.1007/s00784-015-1626-x.

    Article  PubMed  Google Scholar 

  112. Ender A, Mehl A. Accuracy of complete-arch dental impressions: a new method of measuring trueness and precision. J Prosthet Dent. 2013;109(2):121–8. https://doi.org/10.1016/S0022-3913(13)60028-1.

    Article  PubMed  Google Scholar 

  113. Rey-Joly Maura C, Godinho J, Amorim M, Pinto R, Marques D, Jardim L. Precision and trueness of maxillary crowded models produced by 2 vat photopolymerization 3-dimensional printing techniques. Am J Orthod Dentofacial Orthop. 2021;160(1):124–31. https://doi.org/10.1016/j.ajodo.2020.06.033.

    Article  PubMed  Google Scholar 

  114. Menditto A, Patriarca M, Magnusson B. Understanding the meaning of accuracy, trueness and precision. Accred Qual Assur. 2007;12:45. https://doi.org/10.1007/s00769-006-0191-z.

    Article  Google Scholar 

  115. Ahlholm P, Sipila K, Vallittu P, Jakonen M, Kotiranta U. Digital versus conventional impressions in fixed prosthodontics: a review. J Prosthodont. 2018;27(1):35–41. https://doi.org/10.1111/jopr.12527.

    Article  PubMed  Google Scholar 

  116. Marques S, Ribeiro P, Falcao C, Lemos BF, Rios-Carrasco B, Rios-Santos JV, Herrero-Climent M. Digital impressions in implant dentistry: a literature review. Int J Environ Res Public Health. 2021;18(3). https://doi.org/10.3390/ijerph18031020.

  117. Rutkunas V, Geciauskaite A, Jegelevicius D, Vaitiekunas M. Accuracy of digital implant impressions with intraoral scanners. A systematic review. Eur. J Oral Implantol. 2017;10 Suppl 1:101–20. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28944372.

    Google Scholar 

  118. Zhang YJ, Shi JY, Qian SJ, Qiao SC, Lai HC. Accuracy of full-arch digital implant impressions taken using intraoral scanners and related variables: a systematic review. Int J Oral Implantol (Berl). 2021;14(2):157–79. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/34006079.

    PubMed  Google Scholar 

  119. Bergin JM, Rubenstein JE, Mancl L, Brudvik JS, Raigrodski AJ. An in vitro comparison of photogrammetric and conventional complete-arch implant impression techniques. J Prosthet Dent. 2013;110(4):243–51. https://doi.org/10.1016/S0022-3913(13)60370-4.

    Article  PubMed  Google Scholar 

  120. Penarrocha-Diago M, Balaguer-Marti JC, Penarrocha-Oltra D, Balaguer-Martinez JF, Penarrocha-Diago M, Agustin-Panadero R. A combined digital and stereophotogrammetric technique for rehabilitation with immediate loading of complete-arch, implant-supported prostheses: a randomized controlled pilot clinical trial. J Prosthet Dent. 2017;118(5):596–603. https://doi.org/10.1016/j.prosdent.2016.12.015.

    Article  PubMed  Google Scholar 

  121. Lehmann KM, Kasaj A, Ross A, Kammerer PW, Wagner W, Scheller H. A new method for volumetric evaluation of gingival recessions: a feasibility study. J Periodontol. 2012;83(1):50–4. https://doi.org/10.1902/jop.2011.110143.

    Article  PubMed  Google Scholar 

  122. Schneider D, Ender A, Truninger T, Leutert C, Sahrmann P, Roos M, Schmidlin P. Comparison between clinical and digital soft tissue measurements. J Esthet Restor Dent. 2014;26(3):191–9. https://doi.org/10.1111/jerd.12084.

    Article  PubMed  Google Scholar 

  123. Hartkamp O, Lohbauer U, Reich S. Antagonist wear by polished zirconia crowns. Int J Comput Dent. 2017;20(3):263–74. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28852744.

    PubMed  Google Scholar 

  124. Hartkamp O, Peters F, Bothung H, Lohbauer U, Reich S. Optical profilometry versus intraoral (handheld) scanning. Int J Comput Dent. 2017;20(2):165–76. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28630957.

    PubMed  Google Scholar 

  125. Ferreira JB, Christovam IO, Alencar DS, da Motta AFJ, Mattos CT, Cury-Saramago A. Accuracy and reproducibility of dental measurements on tomographic digital models: a systematic review and meta-analysis. Dentomaxillofac Radiol. 2017;46(7):20160455. https://doi.org/10.1259/dmfr.20160455.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Ahn HW, Chang YJ, Kim KA, Joo SH, Park YG, Park KH. Measurement of three-dimensional perioral soft tissue changes in dentoalveolar protrusion patients after orthodontic treatment using a structured light scanner. Angle Orthod. 2014;84(5):795–802. https://doi.org/10.2319/112913-877.1.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Agustin-Panadero R, Penarrocha-Oltra D, Gomar-Vercher S, Penarrocha-Diago M. Stereophotogrammetry for recording the position of multiple implants: technical description. Int J Prosthodont. 2015;28(6):631–6. https://doi.org/10.11607/ijp.4146.

    Article  PubMed  Google Scholar 

  128. Boldt J, Rottner K, Schmitter M, Hopfgartner A, Jakob P, Richter EJ, Tymofiyeva O. High-resolution MR imaging for dental impressions: a feasibility study. Clin Oral Investig. 2017. https://doi.org/10.1007/s00784-017-2204-1

  129. Vollborn T, Habor D, Pekam FC, Heger S, Marotti J, Reich S, et al. Soft tissue-preserving computer-aided impression: a novel concept using ultrasonic 3D-scanning. Int J Comput Dent. 2014;17(4):277–96. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25643460.

    PubMed  Google Scholar 

  130. Wesemann C, Muallah J, Mah J, Bumann A. Accuracy and efficiency of full-arch digitalization and 3D printing: a comparison between desktop model scanners, an intraoral scanner, a CBCT model scan, and stereolithographic 3D printing. Quintessence Int. 2017;48(1):41–50. https://doi.org/10.3290/j.qi.a37130.

    Article  PubMed  Google Scholar 

  131. Flugge T, Derksen W, Te Poel J, Hassan B, Nelson K, Wismeijer D. Registration of cone beam computed tomography data and intraoral surface scans - a prerequisite for guided implant surgery with CAD/CAM drilling guides. Clin Oral Implants Res. 2017;28(9):1113–8. https://doi.org/10.1111/clr.12925.

    Article  PubMed  Google Scholar 

  132. Ritter L, Reiz SD, Rothamel D, Dreiseidler T, Karapetian V, Scheer M, Zoller JE. Registration accuracy of three-dimensional surface and cone beam computed tomography data for virtual implant planning. Clin Oral Implants Res. 2012;23(4):447–52. https://doi.org/10.1111/j.1600-0501.2011.02159.x.

    Article  PubMed  Google Scholar 

  133. Joda T, Gallucci GO. The virtual patient in dental medicine. Clin Oral Implants Res. 2015;26(6):725–6. https://doi.org/10.1111/clr.12379.

    Article  PubMed  Google Scholar 

  134. Vasak C, Strbac GD, Huber CD, Lettner S, Gahleitner A, Zechner W. Evaluation of three different validation procedures regarding the accuracy of template-guided implant placement: an in vitro study. Clin Implant Dent Relat Res. 2015;17(1):142–9. https://doi.org/10.1111/cid.12085.

    Article  PubMed  Google Scholar 

  135. Wang F, Wang Q, Zhang J. Role of dynamic navigation systems in enhancing the accuracy of implant placement: a systematic review and meta-analysis of clinical studies. J Oral Maxillofac Surg. 2021;79(10):2061–70. https://doi.org/10.1016/j.joms.2021.06.005.

    Article  PubMed  Google Scholar 

  136. Wei SM, Shi JY, Qiao SC, Zhang X, Lai HC, Zhang XM. Accuracy and primary stability of tapered or straight implants placed into fresh extraction socket using dynamic navigation: a randomized controlled clinical trial. Clin Oral Investig. 2022;26(3):2733–41. https://doi.org/10.1007/s00784-021-04247-2.

    Article  PubMed  Google Scholar 

  137. Hinckfuss S, Conrad HJ, Lin L, Lunos S, Seong WJ. Effect of surgical guide design and surgeon’s experience on the accuracy of implant placement. J Oral Implantol. 2012;38(4):311–23. https://doi.org/10.1563/AAID-JOI-D-10-00046.

    Article  PubMed  Google Scholar 

  138. Cassetta M, Di Mambro A, Giansanti M, Stefanelli LV, Barbato E. How does an error in positioning the template affect the accuracy of implants inserted using a single fixed mucosa-supported stereolithographic surgical guide? Int J Oral Maxillofac Surg. 2014;43(1):85–92. https://doi.org/10.1016/j.ijom.2013.06.012.

    Article  PubMed  Google Scholar 

  139. Jorba-Garcia A, Gonzalez-Barnadas A, Camps-Font O, Figueiredo R, Valmaseda-Castellon E. Accuracy assessment of dynamic computer-aided implant placement: a systematic review and meta-analysis. Clin Oral Investig. 2021;25(5):2479–94. https://doi.org/10.1007/s00784-021-03833-8.

    Article  PubMed  Google Scholar 

  140. Rivara F, Lumetti S, Calciolari E, Toffoli A, Forlani G, Manfredi E. Photogrammetric method to measure the discrepancy between clinical and software-designed positions of implants. J Prosthet Dent. 2016;115(6):703–11. https://doi.org/10.1016/j.prosdent.2015.10.017.

    Article  PubMed  Google Scholar 

  141. Verhamme LM, Meijer GJ, Boumans T, Schutyser F, Berge SJ, Maal TJ. A clinically relevant validation method for implant placement after virtual planning. Clin Oral Implants Res. 2013;24(11):1265–72. https://doi.org/10.1111/j.1600-0501.2012.02565.x.

    Article  PubMed  Google Scholar 

  142. Vercruyssen M, Fortin T, Widmann G, Jacobs R, Quirynen M. Different techniques of static/dynamic guided implant surgery: modalities and indications. Periodontol 2000. 2014;66(1):214–27. https://doi.org/10.1111/prd.12056.

    Article  PubMed  Google Scholar 

  143. Ambrosio F, Azimi K, Lopez-Torres A, Notice T, Khoshneviszadeh A, Neely A, Kinaia B. Custom allogeneic block graft for ridge augmentation: case series. Clin Adv Periodontics. 2021;13(2):94–101. https://doi.org/10.1002/cap.10183.

    Article  PubMed  Google Scholar 

  144. Blume O, Hoffmann L, Donkiewicz P, Wenisch S, Back M, Franke J, et al. Treatment of severely resorbed maxilla due to peri-implantitis by guided bone regeneration using a customized allogenic bone block: a case report. Materials (Basel). 2017;10(10):1213. https://doi.org/10.3390/ma10101213.

    Article  PubMed  Google Scholar 

  145. Jacotti M, Barausse C, Felice P. Posterior atrophic mandible rehabilitation with onlay allograft created with CAD-CAM procedure: a case report. Implant Dent. 2014;23(1):22–8. https://doi.org/10.1097/ID.0000000000000023.

    Article  PubMed  Google Scholar 

  146. Landsberg C, Moses O. Ridge augmentation using customized allogeneic bone block: a 3-year follow-up of two case reports. Int J Periodontics Restorative Dent. 2020;40(6):881–9. https://doi.org/10.11607/prd.3354.

    Article  PubMed  Google Scholar 

  147. Ryu JI, Yang BE, Yi SM, Choi HG, On SW, Hong SJ, et al. Bone regeneration of a 3D-printed alloplastic and particulate xenogenic graft with rhBMP-2. Int J Mol Sci. 2021;22(22):12518. https://doi.org/10.3390/ijms222212518.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Tamimi F, Torres J, Al-Abedalla K, Lopez-Cabarcos E, Alkhraisat MH, Bassett DC, et al. Osseointegration of dental implants in 3D-printed synthetic onlay grafts customized according to bone metabolic activity in recipient site. Biomaterials. 2014;35(21):5436–45. https://doi.org/10.1016/j.biomaterials.2014.03.050.

    Article  PubMed  Google Scholar 

  149. Neumeister A, Schulz L, Glodecki C. Investigations on the accuracy of 3D-printed drill guides for dental implantology. Int J Comput Dent. 2017;20(1):35–51. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28294204.

    PubMed  Google Scholar 

  150. Matta RE, Bergauer B, Adler W, Wichmann M, Nickenig HJ. The impact of the fabrication method on the three-dimensional accuracy of an implant surgery template. J Craniomaxillofac Surg. 2017;45(6):804–8. https://doi.org/10.1016/j.jcms.2017.02.015.

    Article  PubMed  Google Scholar 

  151. Buser D, Bornstein MM, Weber HP, Grutter L, Schmid B, Belser UC. Early implant placement with simultaneous guided bone regeneration following single-tooth extraction in the esthetic zone: a cross-sectional, retrospective study in 45 subjects with a 2- to 4-year follow-up. J Periodontol. 2008;79(9):1773–81. https://doi.org/10.1902/jop.2008.080071.

    Article  PubMed  Google Scholar 

  152. Buser D, Halbritter S, Hart C, Bornstein MM, Grutter L, Chappuis V, Belser UC. Early implant placement with simultaneous guided bone regeneration following single-tooth extraction in the esthetic zone: 12-month results of a prospective study with 20 consecutive patients. J Periodontol. 2009;80(1):152–62. https://doi.org/10.1902/jop.2009.080360.

    Article  PubMed  Google Scholar 

  153. Van Assche N, Vercruyssen M, Coucke W, Teughels W, Jacobs R, Quirynen M. Accuracy of computer-aided implant placement. Clin Oral Implants Res. 2012;23(Suppl 6):112–23. https://doi.org/10.1111/j.1600-0501.2012.02552.x.

    Article  PubMed  Google Scholar 

  154. Van de Velde T, Glor F, De Bruyn H. A model study on flapless implant placement by clinicians with a different experience level in implant surgery. Clin Oral Implants Res. 2008;19(1):66–72. https://doi.org/10.1111/j.1600-0501.2007.01423.x.

    Article  PubMed  Google Scholar 

  155. Abdelhay N, Prasad S, Gibson MP. Failure rates associated with guided versus non-guided dental implant placement: a systematic review and meta-analysis. BDJ Open. 2021;7(1):31. https://doi.org/10.1038/s41405-021-00086-1.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Cristache CM, Burlibasa M, Tudor I, Totu EE, Di Francesco F, Moraru L. Accuracy, labor-time and patient-reported outcomes with partially versus fully digital workflow for flapless guided dental implants insertion-a randomized clinical trial with one-year follow-up. J Clin Med. 2021;10(5):1102. https://doi.org/10.3390/jcm10051102.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Gargallo-Albiol J, Barootchi S, Marques-Guasch J, Wang HL. Fully guided versus half-guided and freehand implant placement: systematic review and meta-analysis. Int J Oral Maxillofac Implants. 2020;35(6):1159–69. https://doi.org/10.11607/jomi.7942.

    Article  PubMed  Google Scholar 

  158. Matsumura A, Nakano T, Ono S, Kaminaka A, Yatani H, Kabata D. Multivariate analysis of causal factors influencing accuracy of guided implant surgery for partial edentulism: a retrospective clinical study. Int J Implant Dent. 2021;7(1):28. https://doi.org/10.1186/s40729-021-00313-2.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Nickenig HJ, Wichmann M, Hamel J, Schlegel KA, Eitner S. Evaluation of the difference in accuracy between implant placement by virtual planning data and surgical guide templates versus the conventional free-hand method - a combined in vivo - in vitro technique using cone-beam CT (Part II). J Craniomaxillofac Surg. 2010;38(7):488–93. https://doi.org/10.1016/j.jcms.2009.10.023.

    Article  PubMed  Google Scholar 

  160. Pellegrino G, Ferri A, Del Fabbro M, Prati C, Gandolfi MG, Marchetti C. Dynamic navigation in implant dentistry: a systematic review and meta-analysis. Int J Oral Maxillofac Implants. 2021;36(5):e121–40. https://doi.org/10.11607/jomi.8770.

    Article  PubMed  Google Scholar 

  161. Wang ZY, Chao JR, Zheng JW, You M, Liu Y, Shen JF. The influence of crown coverage on the accuracy of static guided implant surgery in partially edentulous models: an in vitro study. J Dent. 2021;115:103882. https://doi.org/10.1016/j.jdent.2021.103882.

    Article  PubMed  Google Scholar 

  162. Raico Gallardo YN, da Silva-Olivio IRT, Mukai E, Morimoto S, Sesma N, Cordaro L. Accuracy comparison of guided surgery for dental implants according to the tissue of support: a systematic review and meta-analysis. Clin Oral Implants Res. 2017;28(5):602–12. https://doi.org/10.1111/clr.12841.

    Article  PubMed  Google Scholar 

  163. Widmann G, Fischer B, Berggren JP, Dennhardt A, Schullian P, Reto B, Puelacher W. Cone beam computed tomography vs multislice computed tomography in computer-aided design/computer-assisted manufacture guided implant surgery based on three-dimensional optical scanning and stereolithographic guides: does image modality matter? Int J Oral Maxillofac Implants. 2016;31(3):527–33. https://doi.org/10.11607/jomi.4222.

    Article  PubMed  Google Scholar 

  164. Block MS, Emery RW, Cullum DR, Sheikh A. Implant placement is more accurate using dynamic navigation. J Oral Maxillofac Surg. 2017;75(7):1377–86. https://doi.org/10.1016/j.joms.2017.02.026.

    Article  PubMed  Google Scholar 

  165. Cunha RM, Souza FA, Hadad H, Poli PP, Maiorana C, Carvalho PSP. Accuracy evaluation of computer-guided implant surgery associated with prototyped surgical guides. J Prosthet Dent. 2021;125(2):266–72. https://doi.org/10.1016/j.prosdent.2019.07.010.

    Article  PubMed  Google Scholar 

  166. Zhou W, Liu Z, Song L, Kuo C-L, Shafer DM. Clinical factors affecting the accuracy of guided implant surgery—a systematic review and meta-analysis. J Evid Based Dental Pract. 2017. https://doi.org/10.1016/j.jebdp.2017.07.007.

  167. Guentsch A, Sukhtankar L, An H, Luepke PG. Precision and trueness of implant placement with and without static surgical guides: an in vitro study. J Prosthet Dent. 2021;126(3):398–404. https://doi.org/10.1016/j.prosdent.2020.06.015.

    Article  PubMed  Google Scholar 

  168. Kuhl S, Payer M, Zitzmann NU, Lambrecht JT, Filippi A. Technical accuracy of printed surgical templates for guided implant surgery with the coDiagnostiX software. Clin Implant Dent Relat Res. 2015;17(Suppl 1):e177–82. https://doi.org/10.1111/cid.12152.

    Article  PubMed  Google Scholar 

  169. Marei HF, Abdel-Hady A, Al-Khalifa K, Al-Mahalawy H. Influence of surgeon experience on the accuracy of implant placement via a partially computer-guided surgical protocol. Int J Oral Maxillofac Implants. 2019;34(5):1177–83. https://doi.org/10.11607/jomi.7480.

    Article  PubMed  Google Scholar 

  170. Vermeulen J. The accuracy of implant placement by experienced surgeons: guided vs freehand approach in a simulated plastic model. Int J Oral Maxillofac Implants. 2017;32(3):617–24. https://doi.org/10.11607/jomi.5065.

    Article  PubMed  Google Scholar 

  171. Behneke A, Burwinkel M, Behneke N. Factors influencing transfer accuracy of cone beam CT-derived template-based implant placement. Clin Oral Implants Res. 2012;23(4):416–23. https://doi.org/10.1111/j.1600-0501.2011.02337.x.

    Article  PubMed  Google Scholar 

  172. Noharet R, Pettersson A, Bourgeois D. Accuracy of implant placement in the posterior maxilla as related to 2 types of surgical guides: a pilot study in the human cadaver. J Prosthet Dent. 2014;112(3):526–32. https://doi.org/10.1016/j.prosdent.2013.12.013.

    Article  PubMed  Google Scholar 

  173. Beretta M, Poli PP, Maiorana C. Accuracy of computer-aided template-guided oral implant placement: a prospective clinical study. J Periodontal Implant Sci. 2014;44(4):184–93. https://doi.org/10.5051/jpis.2014.44.4.184.

    Article  PubMed  PubMed Central  Google Scholar 

  174. El Kholy K, Lazarin R, Janner SFM, Faerber K, Buser R, Buser D. Influence of surgical guide support and implant site location on accuracy of static Computer-Assisted Implant Surgery. Clin Oral Implants Res. 2019;30(11):1067–75. https://doi.org/10.1111/clr.13520.

    Article  PubMed  Google Scholar 

  175. Geng W, Liu C, Su Y, Li J, Zhou Y. Accuracy of different types of computer-aided design/computer-aided manufacturing surgical guides for dental implant placement. Int J Clin Exp Med. 2015;8(6):8442–9. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26309497.

    PubMed  PubMed Central  Google Scholar 

  176. Nickenig HJ, Eitner S. An alternative method to match planned and achieved positions of implants, after virtual planning using cone-beam CT data and surgical guide templates--a method reducing patient radiation exposure (part I). J Craniomaxillofac Surg. 2010;38(6):436–40. https://doi.org/10.1016/j.jcms.2009.10.025.

    Article  PubMed  Google Scholar 

  177. Song YW, Kim J, Kim JH, Park JM, Jung UW, Cha JK. Accuracy of dental implant placement by a novel in-house model-free and zero-setup fully guided surgical template made of a light-cured composite resin (VARO Guide((R))): a comparative in vitro study. Materials (Basel). 2021;14(14):4023. https://doi.org/10.3390/ma14144023.

    Article  PubMed  Google Scholar 

  178. Pettersson A, Komiyama A, Hultin M, Nasstrom K, Klinge B. Accuracy of virtually planned and template guided implant surgery on edentate patients. Clin Implant Dent Relat Res. 2012;14(4):527–37. https://doi.org/10.1111/j.1708-8208.2010.00285.x.

    Article  PubMed  Google Scholar 

  179. Joda T, Bragger U. Time-efficiency analysis of the treatment with monolithic implant crowns in a digital workflow: a randomized controlled trial. Clin Oral Implants Res. 2016;27(11):1401–6. https://doi.org/10.1111/clr.12753.

    Article  PubMed  Google Scholar 

  180. Joda T, Ferrari M, Gallucci GO, Wittneben JG, Bragger U. Digital technology in fixed implant prosthodontics. Periodontol 2000. 2017;73(1):178–92. https://doi.org/10.1111/prd.12164.

    Article  PubMed  Google Scholar 

  181. Kapos T, Evans C. CAD/CAM technology for implant abutments, crowns, and superstructures. Int J Oral Maxillofac Implants. 2014;29(Suppl):117–36. https://doi.org/10.11607/jomi.2014suppl.g2.3.

    Article  PubMed  Google Scholar 

  182. Joda T, Bragger U. Complete digital workflow for the production of implant-supported single-unit monolithic crowns. Clin Oral Implants Res. 2014;25(11):1304–6. https://doi.org/10.1111/clr.12270.

    Article  PubMed  Google Scholar 

  183. van Noort R. The future of dental devices is digital. Dent Mater. 2012;28(1):3–12. https://doi.org/10.1016/j.dental.2011.10.014.

    Article  PubMed  Google Scholar 

  184. Kim Y, Oh TJ, Misch CE, Wang HL. Occlusal considerations in implant therapy: clinical guidelines with biomechanical rationale. Clin Oral Implants Res. 2005;16(1):26–35. https://doi.org/10.1111/j.1600-0501.2004.01067.x.

    Article  PubMed  Google Scholar 

  185. Abduo J, Lyons K, Bennani V, Waddell N, Swain M. Fit of screw-retained fixed implant frameworks fabricated by different methods: a systematic review. Int J Prosthodont. 2011;24(3):207–20. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/21519567.

    PubMed  Google Scholar 

  186. Heckmann SM, Karl M, Wichmann MG, Winter W, Graef F, Taylor TD. Cement fixation and screw retention: parameters of passive fit. An in vitro study of three-unit implant-supported fixed partial dentures. Clin Oral Implants Res. 2004;15(4):466–73. https://doi.org/10.1111/j.1600-0501.2004.01027.x.

    Article  PubMed  Google Scholar 

  187. Millington ND, Leung T. Inaccurate fit of implant superstructures. Part 1: stresses generated on the superstructure relative to the size of fit discrepancy. Int J Prosthodont. 1995;8(6):511–6. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/8595110.

    PubMed  Google Scholar 

  188. Att W, Komine F, Gerds T, Strub JR. Marginal adaptation of three different zirconium dioxide three-unit fixed dental prostheses. J Prosthet Dent. 2009;101(4):239–47. https://doi.org/10.1016/S0022-3913(09)60047-0.

    Article  PubMed  Google Scholar 

  189. Beuer F, Aggstaller H, Edelhoff D, Gernet W, Sorensen J. Marginal and internal fits of fixed dental prostheses zirconia retainers. Dent Mater. 2009;25(1):94–102. https://doi.org/10.1016/j.dental.2008.04.018.

    Article  PubMed  Google Scholar 

  190. Bragger U, Karoussis I, Persson R, Pjetursson B, Salvi G, Lang N. Technical and biological complications/failures with single crowns and fixed partial dentures on implants: a 10-year prospective cohort study. Clin Oral Implants Res. 2005;16(3):326–34. https://doi.org/10.1111/j.1600-0501.2005.01105.x.

    Article  PubMed  Google Scholar 

  191. Katsoulis J, Mericske-Stern R, Rotkina L, Zbaren C, Enkling N, Blatz MB. Precision of fit of implant-supported screw-retained 10-unit computer-aided-designed and computer-aided-manufactured frameworks made from zirconium dioxide and titanium: an in vitro study. Clin Oral Implants Res. 2014;25(2):165–74. https://doi.org/10.1111/clr.12039.

    Article  PubMed  Google Scholar 

  192. Kunii J, Hotta Y, Tamaki Y, Ozawa A, Kobayashi Y, Fujishima A, et al. Effect of sintering on the marginal and internal fit of CAD/CAM-fabricated zirconia frameworks. Dent Mater J. 2007;26(6):820–6. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18203487.

    Article  PubMed  Google Scholar 

  193. McLean JW, von Fraunhofer JA. The estimation of cement film thickness by an in vivo technique. Br Dent J. 1971;131(3):107–11. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/5283545.

    Article  PubMed  Google Scholar 

  194. Carames J, Marques D, Malta Barbosa J, Moreira A, Crispim P, Chen A. Full-arch implant-supported rehabilitations: a prospective study comparing porcelain-veneered zirconia frameworks to monolithic zirconia. Clin Oral Implants Res. 2019;30(1):68–78. https://doi.org/10.1111/clr.13393.

    Article  PubMed  Google Scholar 

  195. Carames J, Tovar Suinaga L, Yu YC, Perez A, Kang M. Clinical advantages and limitations of monolithic zirconia restorations full arch implant supported reconstruction: case series. Int J Dent. 2015;2015:392496. https://doi.org/10.1155/2015/392496.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Kim JH, Lee SJ, Park JS, Ryu JJ. Fracture load of monolithic CAD/CAM lithium disilicate ceramic crowns and veneered zirconia crowns as a posterior implant restoration. Implant Dent. 2013;22(1):66–70. https://doi.org/10.1097/ID.0b013e318278a576.

    Article  PubMed  Google Scholar 

  197. Mendez Carames JM, Pereira S, da Mata AD, da Silva Marques DN, de Oliveira Francisco HC. Ceramic-veneered zirconia frameworks in full-arch implant rehabilitations: a 6-month to 5-year retrospective cohort study. Int J Oral Maxillofac Implants. 2016;31(6):1407–14. https://doi.org/10.11607/jomi.4675.

    Article  PubMed  Google Scholar 

  198. Masri R, Kempler J, Driscoll CF. Digital design and manufacture of implant abutments. In: Clinical applications of digital dental technology. Wiley; 2015. p. 167–76.

    Chapter  Google Scholar 

  199. Abduo J, Lyons K, Bennamoun M. Trends in computer-aided manufacturing in prosthodontics: a review of the available streams. Int J Dent. 2014;2014:783948. https://doi.org/10.1155/2014/783948.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Kikuchi M, Okuno O. Machinability evaluation of titanium alloys. Dent Mater J. 2004;23(1):37–45. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/15164923

    Article  PubMed  Google Scholar 

  201. Koch GK, Gallucci GO, Lee SJ. Accuracy in the digital workflow: from data acquisition to the digitally milled cast. J Prosthet Dent. 2016;115(6):749–54. https://doi.org/10.1016/j.prosdent.2015.12.004.

    Article  PubMed  Google Scholar 

  202. Papadiochou S, Pissiotis AL. Marginal adaptation and CAD-CAM technology: a systematic review of restorative material and fabrication techniques. J Prosthet Dent. 2017;119(4):545–51. https://doi.org/10.1016/j.prosdent.2017.07.001.

    Article  PubMed  Google Scholar 

  203. Whicher DM, Miller JE, Dunham KM, Joffe S. Gatekeepers for pragmatic clinical trials. Clin Trials. 2015;12(5):442–8. https://doi.org/10.1177/1740774515597699.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Califf RM, Sugarman J. Exploring the ethical and regulatory issues in pragmatic clinical trials. Clin Trials. 2015;12(5):436–41. https://doi.org/10.1177/1740774515598334.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Siqueira R, Galli M, Chen Z, Mendonca G, Meirelles L, Wang HL, Chan HL. Intraoral scanning reduces procedure time and improves patient comfort in fixed prosthodontics and implant dentistry: a systematic review. Clin Oral Investig. 2021;25(12):6517–31. https://doi.org/10.1007/s00784-021-04157-3.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Williams HC, Burden-Teh E, Nunn AJ. What is a pragmatic clinical trial? J Invest Dermatol. 2015;135(6):1–3. https://doi.org/10.1038/jid.2015.134.

    Article  PubMed  Google Scholar 

  207. Chuang SK, Tian L, Wei LJ, Dodson TB. Kaplan-Meier analysis of dental implant survival: a strategy for estimating survival with clustered observations. J Dent Res. 2001;80(11):2016–20. https://doi.org/10.1177/00220345010800111301.

    Article  PubMed  Google Scholar 

  208. Collett D. Sample size determination in survival analysis. In: Encyclopedia of biostatistics. Wiley; 2005.

    Google Scholar 

  209. Hannigan A, Lynch CD. Statistical methodology in oral and dental research: pitfalls and recommendations. J Dent. 2013;41(5):385–92. https://doi.org/10.1016/j.jdent.2013.02.013.

    Article  PubMed  Google Scholar 

  210. Ahlers MO, Bernhardt O, Jakstat HA, Kordass B, Turp JC, Schindler HJ, Hugger A. Motion analysis of the mandible: guidelines for standardized analysis of computer-assisted recording of condylar movements. Int J Comput Dent. 2015;18(3):201–23. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26389133.

    PubMed  Google Scholar 

  211. Hugger A, Hugger S, Ahlers MO, Schindler HJ, Türp JC, Kordass B. Movement function of the mandible: a concept for structuring criteria for analysis and for standardizing computer-assisted recordings. J Craniomand Funct. 2013;5:41–53.

    Google Scholar 

  212. Amezua X, Iturrate M, Garikano X, Solaberrieta E. Analysis of the impact of the facial scanning method on the precision of a virtual facebow record technique: an in vivo study. J Prosthet Dent. 2021. https://doi.org/10.1016/j.prosdent.2021.10.025

  213. Bapelle M, Dubromez J, Savoldelli C, Tillier Y, Ehrmann E. Modjaw(R) device: analysis of mandibular kinematics recorded for a group of asymptomatic subjects. Cranio. 2021:1–7. https://doi.org/10.1080/08869634.2021.2000790.

  214. Kois JC, Kois DE, Zeitler JM, Martin J. Digital to analog facially generated interchangeable facebow transfer: capturing a standardized reference position. J Prosthodont. 2021;31(S1):13–22. https://doi.org/10.1111/jopr.13437.

    Article  Google Scholar 

  215. Li J, Att W, Chen Z, Lepidi L, Wang HL, Joda T. Prosthetic articulator-based implant rehabilitation virtual patient: a technique bridging implant surgery and reconstructive dentistry. J Prosthet Dent. 2021. https://doi.org/10.1016/j.prosdent.2021.09.013

  216. Manazza F, La Rocca S, Nagni M, Chirico L, Cattoni F. A simplified digital workflow for the prosthetic finishing of implant rehabilitations: a case report. J Biol Regul Homeost Agents. 2021;35(4 Suppl. 1):87–97. https://doi.org/10.23812/21-4supp1-8.

    Article  PubMed  Google Scholar 

  217. Park JH, Lee GH, Moon DN, Kim JC, Park M, Lee KM. A digital approach to the evaluation of mandibular position by using a virtual articulator. J Prosthet Dent. 2021;125(6):849–53. https://doi.org/10.1016/j.prosdent.2020.04.002.

    Article  PubMed  Google Scholar 

  218. Yang S, Feng N, Li D, Wu Y, Yue L, Yuan Q. A novel technique to align the intraoral scans to the virtual articulator and set the patient-specific sagittal condylar inclination. J Prosthodont. 2021;31(1):79–84. https://doi.org/10.1111/jopr.13403.

    Article  PubMed  Google Scholar 

  219. Amezua X, Iturrate M, Garikano X, Solaberrieta E. Analysis of the influence of the facial scanning method on the transfer accuracy of a maxillary digital scan to a 3D face scan for a virtual facebow technique: an in vitro study. J Prosthet Dent. 2021. https://doi.org/10.1016/j.prosdent.2021.02.007

  220. Kordass B, Behrendt C, Ruge S. Computerized occlusal analysis - innovative approaches for a practice-oriented procedure. Int J Comput Dent. 2020;23(4):363–75. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/33491932.

    PubMed  Google Scholar 

  221. Petre A, Drafta S, Stefanescu C, Oancea L. Virtual facebow technique using standardized background images. J Prosthet Dent. 2019;121(5):724–8. https://doi.org/10.1016/j.prosdent.2018.07.008.

    Article  PubMed  Google Scholar 

  222. Solaberrieta E, Garmendia A, Minguez R, Brizuela A, Pradies G. Virtual facebow technique. J Prosthet Dent. 2015;114(6):751–5. https://doi.org/10.1016/j.prosdent.2015.06.012.

    Article  PubMed  Google Scholar 

  223. Solaberrieta E, Minguez R, Barrenetxea L, Etxaniz O. Direct transfer of the position of digitized casts to a virtual articulator. J Prosthet Dent. 2013;109(6):411–4. https://doi.org/10.1016/S0022-3913(13)60330-3.

    Article  PubMed  Google Scholar 

  224. Solaberrieta E, Otegi JR, Minguez R, Etxaniz O. Improved digital transfer of the maxillary cast to a virtual articulator. J Prosthet Dent. 2014;112(4):921–4. https://doi.org/10.1016/j.prosdent.2014.03.021.

    Article  PubMed  Google Scholar 

  225. Ury E, Fornai C, Weber GW. Accuracy of transferring analog dental casts to a virtual articulator. J Prosthet Dent. 2020;123(2):305–13. https://doi.org/10.1016/j.prosdent.2018.12.019.

    Article  PubMed  Google Scholar 

  226. Lepidi L, Galli M, Mastrangelo F, Venezia P, Joda T, Wang HL, Li J. Virtual articulators and virtual mounting procedures: where do we stand? J Prosthodont. 2021;30(1):24–35. https://doi.org/10.1111/jopr.13240.

    Article  PubMed  Google Scholar 

  227. Fraile C, Ferreiroa A, Romeo M, Alonso R, Pradies G. Clinical study comparing the accuracy of interocclusal records, digitally obtained by three different devices. Clin Oral Investig. 2021. https://doi.org/10.1007/s00784-021-04174-2.

  228. Fraile C, Ferreiroa A, Solaberrieta E, Pradies G. Intraoral versus extraoral digital occlusal records: a pilot study. Int J Comput Dent. 2018;21(4):329–33. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30539175.

    PubMed  Google Scholar 

  229. Goob J, Erdelt K, Schweiger J, Pho Duc JM, Schubert O, Guth JF. Reproducibility of a magnet-based jaw motion analysis system. Int J Comput Dent. 2020;23(1):39–48. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/32207460.

    PubMed  Google Scholar 

  230. Conejo J, Dayo AF, Syed AZ, Mupparapu M. The digital clone: intraoral scanning, face scans and cone beam computed tomography integration for diagnosis and treatment planning. Dent Clin North Am. 2021;65(3):529–53. https://doi.org/10.1016/j.cden.2021.02.011.

    Article  PubMed  Google Scholar 

  231. Hong SJ, Noh K. Setting the sagittal condylar inclination on a virtual articulator by using a facial and intraoral scan of the protrusive interocclusal position: a dental technique. J Prosthet Dent. 2021;125(3):392–5. https://doi.org/10.1016/j.prosdent.2020.01.031.

    Article  PubMed  Google Scholar 

  232. Joda T, Bragger U, Gallucci G. Systematic literature review of digital three-dimensional superimposition techniques to create virtual dental patients. Int J Oral Maxillofac Implants. 2015;30(2):330–7. https://doi.org/10.11607/jomi.3852.

    Article  PubMed  Google Scholar 

  233. Mangano C, Luongo F, Migliario M, Mortellaro C, Mangano FG. Combining intraoral scans, cone beam computed tomography and face scans: the virtual patient. J Craniofac Surg. 2018;29(8):2241–6. https://doi.org/10.1097/SCS.0000000000004485.

    Article  PubMed  Google Scholar 

  234. Eldridge SM, Lancaster GA, Campbell MJ, Thabane L, Hopewell S, Coleman CL, Bond CM. Defining feasibility and pilot studies in preparation for randomised controlled trials: development of a conceptual framework. PLoS One. 2016;11(3):e0150205. https://doi.org/10.1371/journal.pone.0150205.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Pozzi A, Polizzi G, Moy PK. Guided surgery with tooth-supported templates for single missing teeth: a critical review. Eur J Oral Implantol. 2016;9(Suppl 1):S135–53. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27314119.

    PubMed  Google Scholar 

  236. Bover-Ramos F, Vina-Almunia J, Cervera-Ballester J, Penarrocha-Diago M, Garcia-Mira B. Accuracy of implant placement with computer-guided surgery: a systematic review and meta-analysis comparing cadaver, clinical, and in vitro studies. Int J Oral Maxillofac Implants. 2017. https://doi.org/10.11607/jomi.5556

  237. Afrashtehfar KI. Conventional free-hand, dynamic navigation and static guided implant surgery produce similar short-term patient-reported outcome measures and experiences. Evid Based Dent. 2021;22(4):143–5. https://doi.org/10.1038/s41432-021-0216-9.

    Article  PubMed  Google Scholar 

  238. Joda T, Derksen W, Wittneben JG, Kuehl S. Static computer-aided implant surgery (s-CAIS) analysing patient-reported outcome measures (PROMs), economics and surgical complications: a systematic review. Clin Oral Implants Res. 2018;29(Suppl 16):359–73. https://doi.org/10.1111/clr.13136.

    Article  PubMed  Google Scholar 

  239. Baig MR. Accuracy of impressions of multiple implants in the edentulous arch: a systematic review. Int J Oral Maxillofac Implants. 2014;29(4):869–80. https://doi.org/10.11607/jomi.3233.

    Article  PubMed  Google Scholar 

  240. Kim JH, Kim KR, Kim S. Critical appraisal of implant impression accuracies: a systematic review. J Prosthet Dent. 2015;114(2):185–92. e181. https://doi.org/10.1016/j.prosdent.2015.02.005.

    Article  PubMed  Google Scholar 

  241. Papaspyridakos P, Chen CJ, Gallucci GO, Doukoudakis A, Weber HP, Chronopoulos V. Accuracy of implant impressions for partially and completely edentulous patients: a systematic review. Int J Oral Maxillofac Implants. 2014;29(4):836–45. https://doi.org/10.11607/jomi.3625.

    Article  PubMed  Google Scholar 

  242. Hussein MO. Photogrammetry technology in implant dentistry: a systematic review. J Prosthet Dent. 2021. https://doi.org/10.1016/j.prosdent.2021.09.015.

  243. Ma B, Yue X, Sun Y, Peng L, Geng W. Accuracy of photogrammetry, intraoral scanning, and conventional impression techniques for complete-arch implant rehabilitation: an in vitro comparative study. BMC Oral Health. 2021;21(1):636. https://doi.org/10.1186/s12903-021-02005-0.

    Article  PubMed  PubMed Central  Google Scholar 

  244. Revilla-Leon M, Att W, Ozcan M, Rubenstein J. Comparison of conventional, photogrammetry, and intraoral scanning accuracy of complete-arch implant impression procedures evaluated with a coordinate measuring machine. J Prosthet Dent. 2021;125(3):470–8. https://doi.org/10.1016/j.prosdent.2020.03.005.

    Article  PubMed  Google Scholar 

  245. Revilla-Leon M, Rubenstein J, Methani MM, Piedra-Cascon W, Ozcan M, Att W. Trueness and precision of complete-arch photogrammetry implant scanning assessed with a coordinate-measuring machine. J Prosthet Dent. 2021. https://doi.org/10.1016/j.prosdent.2021.05.019.

  246. Papaspyridakos P, Gallucci GO, Chen CJ, Hanssen S, Naert I, Vandenberghe B. Digital versus conventional implant impressions for edentulous patients: accuracy outcomes. Clin Oral Implants Res. 2016;27(4):465–72. https://doi.org/10.1111/clr.12567.

    Article  PubMed  Google Scholar 

  247. Bishti S, Tuna T, Rittich A, Wolfart S. Patient-reported outcome measures (PROMs) of implant-supported reconstructions using digital workflows: a systematic review and meta-analysis. Clin Oral Implants Res. 2021;32(Suppl 21):318–35. https://doi.org/10.1111/clr.13846.

    Article  PubMed  Google Scholar 

  248. Delize V, Bouhy A, Lambert F, Lamy M. Intrasubject comparison of digital vs. conventional workflow for screw-retained single-implant crowns: prosthodontic and patient-centered outcomes. Clin Oral Implants Res. 2019;30(9):892–902. https://doi.org/10.1111/clr.13494.

    Article  PubMed  Google Scholar 

  249. Joda T, Bragger U. Time-efficiency analysis comparing digital and conventional workflows for implant crowns: a prospective clinical crossover trial. Int J Oral Maxillofac Implants. 2015;30(5):1047–53. https://doi.org/10.11607/jomi.3963.

    Article  PubMed  Google Scholar 

  250. Joda T, Bragger U. Patient-centered outcomes comparing digital and conventional implant impression procedures: a randomized crossover trial. Clin Oral Implants Res. 2016;27(12):e185–9. https://doi.org/10.1111/clr.12600.

    Article  PubMed  Google Scholar 

  251. Joda T, Ferrari M, Bragger U, Zitzmann NU. Patient Reported Outcome Measures (PROMs) of posterior single-implant crowns using digital workflows: a randomized controlled trial with a three-year follow-up. Clin Oral Implants Res. 2018;29(9):954–61. https://doi.org/10.1111/clr.13360.

    Article  PubMed  Google Scholar 

  252. Kunavisarut C, Jarangkul W, Pornprasertsuk-Damrongsri S, Joda T. Patient-reported outcome measures (PROMs) comparing digital and conventional workflows for treatment with posterior single-unit implant restorations: a randomized controlled trial. J Dent. 2021;117:103875. https://doi.org/10.1016/j.jdent.2021.103875.

    Article  PubMed  Google Scholar 

  253. Mello CC, Lemos CAA, de Luna Gomes JM, Verri FR, Pellizzer EP. CAD/CAM vs conventional technique for fabrication of implant-supported frameworks: a systematic review and meta-analysis of in vitro studies. Int J Prosthodont. 2019;32(2):182–92. https://doi.org/10.11607/ijp.5616.

    Article  PubMed  Google Scholar 

  254. Patzelt SB, Spies BC, Kohal RJ. CAD/CAM-fabricated implant-supported restorations: a systematic review. Clin Oral Implants Res. 2015;26(Suppl 11):77–85. https://doi.org/10.1111/clr.12633.

    Article  PubMed  Google Scholar 

  255. Spies BC, Pieralli S, Vach K, Kohal RJ. CAD/CAM-fabricated ceramic implant-supported single crowns made from lithium disilicate: final results of a 5-year prospective cohort study. Clin Implant Dent Relat Res. 2017;19(5):876–83. https://doi.org/10.1111/cid.12508.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Caramês, J.M.M., da Silva Marques, D.N. (2023). Computer-Assisted Implant Dentistry. In: Dard, M.M. (eds) Surgical Research in Implant Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-031-37234-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37234-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37233-9

  • Online ISBN: 978-3-031-37234-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics