Skip to main content

Imaging of Resorbable Bone Substitute Materials

  • Chapter
  • First Online:
Surgical Research in Implant Dentistry

Abstract

The imaging of bioresorbable bone graft materials is an important process for evaluating graft regenerative capabilities. Two-dimensional radiography provides information on the underlying bone and its surrounding structures and is routinely used in dentistry, playing a role in the planning of treatment. However, for monitoring the healing process of bioresorbable bone grafts, 2D radiography offers a limited function due to a distortion in the relation between measurements made on the radiograph and reality, as well as due to overlying soft tissues obscuring the region of interest. The development of three-dimensional radiography and ultrasonography has provided alternatives for the monitoring of resorbable bone grafts. This book chapter will evaluate each technique and its application to resorbable bone graft materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Milovanovic P, et al. Osteocytic canalicular networks: morphological implications for altered mechanosensitivity. ACS Nano. 2013;7(9):7542–51. https://doi.org/10.1021/nn401360u.

    Article  PubMed  Google Scholar 

  2. Busse B, et al. Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cell. 2010;9(6):1065–75. https://doi.org/10.1111/j.1474-9726.2010.00633.x.

    Article  PubMed  Google Scholar 

  3. Zimmermann EA, Busse B, Ritchie RO. The fracture mechanics of human bone: influence of disease and treatment. Bonekey Rep. 2015;4:743. https://doi.org/10.1038/bonekey.2015.112.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Roddy E, DeBaun MR, Daoud-Gray A, Yang YP, Gardner MJ. Treatment of critical-sized bone defects: clinical and tissue engineering perspectives. Eur J Orthop Surg Traumatol. 2018;28(3):351–62. https://doi.org/10.1007/s00590-017-2063-0.

    Article  PubMed  Google Scholar 

  5. Perić Kačarević Ž, et al. An introduction to bone tissue engineering. Int J Artif Organs. 2020;43(2):69–86. https://doi.org/10.1177/0391398819876286.

    Article  PubMed  Google Scholar 

  6. Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE. Scaffold design for bone regeneration. J Nanosci Nanotechnol. 2014;14(1):15–56. https://doi.org/10.1166/jnn.2014.9127.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2001;10(Suppl 2):S96–101. https://doi.org/10.1007/s005860100282.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rider P, Kačarević ŽP, Alkildani S, Retnasingh S, Schnettler R, Barbeck M. Additive manufacturing for guided bone regeneration: a perspective for alveolar ridge augmentation. Int J Mol Sci. 2018;19(11):3308. https://doi.org/10.3390/ijms19113308.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bouet G, Cruel M, Laurent C, Vico L, Malaval L, Marchat D. Validation of an in vitro 3D bone culture model with perfused and mechanically stressed ceramic scaffold. Eur Cells Mater. 2015;29:250–67. https://doi.org/10.22203/eCM.v029a19.

    Article  Google Scholar 

  10. Kasten P, Beyen I, Niemeyer P, Luginbühl R, Bohner M, Richter W. Porosity and pore size of β-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study. Acta Biomater. 2008;4(6):1904–15. https://doi.org/10.1016/j.actbio.2008.05.017.

    Article  PubMed  Google Scholar 

  11. Shah N. Recent advances in imaging technologies in dentistry. World J Radiol. 2014;6(10):794. https://doi.org/10.4329/wjr.v6.i10.794.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Versluis RGJA, Vismans FJFE, Van De Ven CM, Springer MP, Petri H. Radiographic absorptiometry of the phalanges as a screening instrument to detect osteoporosis of the hip. Acta Radiol. 1999;40(4):418–21. https://doi.org/10.3109/02841859909177757.

    Article  PubMed  Google Scholar 

  13. Risselada M, Winter MD, Lewis DD, Griffith E, Pozzi A. Comparison of three imaging modalities used to evaluate bone healing after tibial tuberosity advancement in cranial cruciate ligament-deficient dogs and comparison of the effect of a gelatinous matrix and a demineralized bone matrix mix on bone healing - a pilot study. BMC Vet Res. 2018;14(1):164. https://doi.org/10.1186/s12917-018-1490-4.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pekkan G. Radiopacity of dental materials: an overview. Avicenna J Dent Res. 2016;8(2):8. https://doi.org/10.17795/ajdr-36,847.

    Article  Google Scholar 

  15. Pekkan G, Aktas A, Pekkan K. Comparative radiopacity of bone graft materials. J Craniomaxillofac Surg. 2012;40(1):e1. https://doi.org/10.1016/j.jcms.2011.01.018.

    Article  PubMed  Google Scholar 

  16. Monsour PA, Dudhia R. Implant radiography and radiology. Aust Dent J. 2008;53(Suppl 1):S11–25. https://doi.org/10.1111/j.1834-7819.2008.00037.x.

    Article  PubMed  Google Scholar 

  17. Riachi F, et al. Influence of material properties on rate of resorption of two bone graft materials after sinus lift using radiographic assessment. Int J Dent. 2012;2012:737262. https://doi.org/10.1155/2012/737262.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tonea M, et al. Comparative dimensional study between panoramic X-ray (OPG) and cone beam CT (CBCT). ARS Medica Tomitana. 2016;22(3):196–202. https://doi.org/10.1515/arsm-2016-0033.

    Article  Google Scholar 

  19. Peyrin F, Dong P, Pacureanu A, Langer M. Micro- and nano-CT for the study of bone ultrastructure. Curr Osteoporos Rep. 2014;12(4):465–74. https://doi.org/10.1007/s11914-014-0233-0.

    Article  PubMed  Google Scholar 

  20. De Lange GL, et al. A histomorphometric and micro-computed tomography study of bone regeneration in the maxillary sinus comparing biphasic calcium phosphate and deproteinized cancellous bovine bone in a human split-mouth model. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;117(1):8–22. https://doi.org/10.1016/j.oooo.2013.08.008.

    Article  PubMed  Google Scholar 

  21. Palacio-Mancheno PE, Larriera AI, Doty SB, Cardoso L, Fritton SP. 3D assessment of cortical bone porosity and tissue mineral density using high-resolution μcT: effects of resolution and threshold method. J Bone Miner Res. 2014;29(1):142–50. https://doi.org/10.1002/jbmr.2012.

    Article  PubMed  Google Scholar 

  22. Barth HD, Zimmermann EA, Schaible E, Tang SY, Alliston T, Ritchie RO. Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone. Biomaterials. 2011;32(34):8892–904. https://doi.org/10.1016/j.biomaterials.2011.08.013.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Janovic A, et al. Association between regional heterogeneity in the mid-facial bone micro-architecture and increased fragility along Le Fort lines. Dent Traumatol. 2017;33(4):300–6. https://doi.org/10.1111/edt.12333.

    Article  PubMed  Google Scholar 

  24. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res. 2010;25(7):1468–86. https://doi.org/10.1002/jbmr.141.

    Article  PubMed  Google Scholar 

  25. Hahn M, Bale H, Lavery L, Busse B. Detection of osteogenesis in explanted synthetic hydroxyapatite-silicone orbital implants using 3D X-ray microscopy. Microsc Microanal. 2016;22(S3):116–7. https://doi.org/10.1017/s1431927616001434.

    Article  Google Scholar 

  26. Zehbe R, et al. Going beyond histology. Synchrotron micro-computed tomography as a methodology for biological tissue characterization: from tissue morphology to individual cells. J R Soc Interface. 2009;7(42):49–59. https://doi.org/10.1098/rsif.2008.0539.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hesse B, et al. Accessing osteocyte lacunar geometrical properties in human jaw bone on the submicron length scale using synchrotron radiation μCT. J Microsc. 2014;255(3):158–68. https://doi.org/10.1111/jmi.12147.

    Article  PubMed  Google Scholar 

  28. Rothweiler RM, et al. Comparative quantification of the 3D microarchitecture of human alveolar bone and anterior iliac crest in autologous bone transplants – a synchrotron radiation μ-CT study. Clin Oral Implants Res. 2020;31(S20):16. https://doi.org/10.1111/clr.12_13643.

    Article  Google Scholar 

  29. Jung O, et al. Biocompatibility analyses of HF-passivated magnesium screws for guided bone regeneration (GBR). Int J Mol Sci. 2021;22(22):12567. https://doi.org/10.3390/ijms222212567.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rider P, et al. Biodegradable magnesium barrier membrane used for guided bone regeneration in dental surgery. Bioact Mater. 2021;14:152–68. https://doi.org/10.1016/j.bioactmat.2021.11.018.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kačarević ŽP, et al. Biodegradable magnesium fixation screw for barrier membranes used in guided bone regeneration. Bioact Mater. 2021;14:15–30. https://doi.org/10.1016/j.bioactmat.2021.10.036.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kumar PT, YashodaDevi BK, Rakesh N. Basics of CBCT imaging. JDOR. 2017;13(1):49–55.

    Google Scholar 

  33. Ludlow JB, Davies-Ludlow LE, Brooks SL, Howerton WB. Dosimetry of 3 CBCT devices for oral and maxillofacial radiology: CB Mercuray, NewTom 3G and i-CAT. Dentomaxillofac Radiol. 2006;35(4):219–26. https://doi.org/10.1259/dmfr/14340323.

    Article  PubMed  Google Scholar 

  34. Shokri A, Ramezani L, Bidgoli M, Akbarzadeh M, Ghazikhanlu-Sani K, Fallahi-Sichani H. Effect of field-of-view size on gray values derived from cone-beam computed tomography compared with the Hounsfield unit values from multidetector computed tomography scans. Imaging Sci Dent. 2018;48(1):31–9. https://doi.org/10.5624/isd.2018.48.1.31.

    Article  PubMed  PubMed Central  Google Scholar 

  35. American Dental Association Council on Scientific Affairs. The use of cone-beam computed tomography in dentistry. J Am Dent Assoc. 2012;143(8):899–902. https://doi.org/10.14219/jada.archive.2012.0295.

    Article  Google Scholar 

  36. Periago DR, Scarfe WC, Moshiri M, Scheetz JP, Silveira AM, Farman AG. Linear accuracy and reliability of cone beam CT derived 3-dimensional images constructed using an orthodontic volumetric rendering program. Angle Orthod. 2008;78(3):387–95. https://doi.org/10.2319/122106-52.1.

    Article  PubMed  Google Scholar 

  37. Umanjec-Korac S, Parsa A, Nikoozad AD, Wismeijer D, Hassan B. Accuracy of cone beam computed tomography in following simulated autogenous graft resorption in maxillary sinus augmentation procedure: an ex vivo study. Dentomaxillofac Radiol. 2016;45(6):20160092. https://doi.org/10.1259/dmfr.20160092.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liljensten E, Adolfsson E, Strid KG, Thomsen P. Resorbable and nonresorbable hydroxyapatite granules as bone graft substitutes in rabbit cortical defects. Clin Implant Dent Relat Res. 2003;5(2):95–102. https://doi.org/10.1111/j.1708-8208.2003.tb00190.x.

    Article  PubMed  Google Scholar 

  39. Antonijević D, et al. Application of reference point indentation for micro-mechanical surface characterization of calcium silicate based dental materials. Biomed Microdevices. 2016;18(2):1–12. https://doi.org/10.1007/s10544-016-0047-1.

    Article  Google Scholar 

  40. Antonijevic D, et al. Addition of a fluoride-containing radiopacifier improves micromechanical and biological characteristics of modified calcium silicate cements. J Endod. 2015;41(12):2050–7. https://doi.org/10.1016/j.joen.2015.09.008.

    Article  PubMed  Google Scholar 

  41. Rolvien T, et al. ß-TCP bone substitutes in tibial plateau depression fractures. Knee. 2017;24(5):1138–45. https://doi.org/10.1016/j.knee.2017.06.010.

    Article  PubMed  Google Scholar 

  42. Roschger P, Fratzl P, Eschberger J, Klaushofer K. Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone. 1998;23(4):319–26. https://doi.org/10.1016/S8756-3282(98)00112-4.

    Article  PubMed  Google Scholar 

  43. Antonijevic D, et al. Microstructure and wettability of root canal dentine and root canal filling materials after different chemical irrigation. Appl Surf Sci. 2015;355:369–78. https://doi.org/10.1016/j.apsusc.2015.07.023.

    Article  Google Scholar 

  44. Busse B, Jobke B, Werner M, Fürst M, Rüther W, Delling G. Fluoridosteopathie - Eine vergessene entität. Gleichzeitiges auftreten von coxarthrose und bis dahin unbekannter fluoridosteopathie bei einer 73-jährigen patientin. Pathologe. 2006;27(1):73–9. https://doi.org/10.1007/s00292-005-0799-5.

    Article  PubMed  Google Scholar 

  45. Busse B, et al. Effects of strontium ranelate administration on bisphosphonate-altered hydroxyapatite: matrix incorporation of strontium is accompanied by changes in mineralization and microstructure. Acta Biomater. 2010;6(12):4513–21. https://doi.org/10.1016/j.actbio.2010.07.019.

    Article  PubMed  Google Scholar 

  46. Langstaff S, Sayer M, Smith TJN, Pugh SM. Resorbable bioceramics based on stabilized calcium phosphates. Part II: evaluation of biological response. Biomaterials. 2001;22(2):135–50. https://doi.org/10.1016/S0142-9612(00)00139-3.

    Article  PubMed  Google Scholar 

  47. Protopappas VC, Baga DA, Fotiadis DI, Likas AC, Papachristos AA, Malizos KN. An ultrasound wearable system for the monitoring and acceleration of fracture healing in long bones. IEEE Trans Biomed Eng. 2005;52(9):1597–608. https://doi.org/10.1109/TBME.2005.851507.

    Article  PubMed  Google Scholar 

  48. Yang WP, Wang Z, Feng NQ, Wang CM, Du SL. Application of real-time B-mode ultrasound in posterior decompression and reduction for thoracolumbar burst fracture. Exp Ther Med. 2013;6(4):1005–9. https://doi.org/10.3892/etm.2013.1257.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Vastel L, Meunier A, Siney H, Sedel L, Courpied JP. Effect of different sterilization processing methods on the mechanical properties of human cancellous bone allografts. Biomaterials. 2004;25(11):2105–10. https://doi.org/10.1016/j.biomaterials.2003.08.067.

    Article  PubMed  Google Scholar 

  50. Nguyen KCT, Pachêco-Pereira C, Kaipatur NR, Cheung J, Major PW, Le LH. Comparison of ultrasound imaging and conebeam computed tomography for examination of the alveolar bone level: a systematic review. PLoS One. 2018;13(10):e0200596. https://doi.org/10.1371/journal.pone.0200596.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Noviana D, et al. In vivo study of hydroxyapatite-chitosan and hydroxyapatite-tricalcium phosphate bone graft in sheep’s bone as animal model. In: Proceedings - international conference on instrumentation, communication, information technology and biomedical engineering 2011, ICICI-BME 2011, 2011. pp. 403–408. https://doi.org/10.1109/ICICI-BME.2011.6108636.

  52. Rahimzadeh R, Veshkini A, Sharifi D, Hesaraki S. Value of color Doppler ultrasonography and radiography for the assessment of the cancellous bone scaffold coated with nano-hydroxyapatite in repair of radial bone in rabbit. Acta Cir Bras. 2012;27(2):148–54. https://doi.org/10.1590/s0102-86,502,012,000,200,009.

    Article  PubMed  Google Scholar 

  53. Xiao WL, Zhang DZ, Chen XJ, Yuan C, Xue LF. Osteogenesis effect of guided bone regeneration combined with alveolar cleft grafting: assessment by cone beam computed tomography. Int J Oral Maxillofac Surg. 2016;45(6):683–7. https://doi.org/10.1016/j.ijom.2016.01.013.

    Article  PubMed  Google Scholar 

  54. Lee H-G, Kim Y-D. Volumetric stability of autogenous bone graft with mandibular body bone: cone-beam computed tomography and three-dimensional reconstruction analysis. J Korean Assoc Oral Maxillofac Surg. 2015;41(5):232. https://doi.org/10.5125/jkaoms.2015.41.5.232.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Dasmah A, Thor A, Ekestubbe A, Sennerby L, Rasmusson L. Particulate vs. block bone grafts: three-dimensional changes in graft volume after reconstruction of the atrophic maxilla, a 2-year radiographic follow-up. J Craniomaxillofac Surg. 2012;40(8):654–9. https://doi.org/10.1016/j.jcms.2011.10.032.

    Article  PubMed  Google Scholar 

  56. Spin-Neto R, Stavropoulos A, Pereira LAVD, Marcantonio E, Wenzel A. Fate of autologous and fresh-frozen allogeneic block bone grafts used for ridge augmentation. A CBCT-based analysis. Clin Oral Implants Res. 2013;24(2):167–73. https://doi.org/10.1111/j.1600-0501.2011.02324.x.

    Article  PubMed  Google Scholar 

  57. Kloss FR, Offermanns V, Kloss-Brandstätter A. Comparison of allogeneic and autogenous bone grafts for augmentation of alveolar ridge defects—a 12-month retrospective radiographic evaluation. Clin Oral Implants Res. 2018;29(11):1163–75. https://doi.org/10.1111/clr.13380.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tilaveridis I, Lazaridou M, Zouloumis L, Dimitrakopoulos I, Tilaveridis V, Tilaveridou S. The use of mineralized bone allograft as a single grafting material in maxillary sinus lifting with severely atrophied alveolar ridge (1–3 mm) and immediately inserted dental implants. A 3- up to 8-year retrospective study. Oral Maxillofac Surg. 2018;22(3):267–73. https://doi.org/10.1007/s10006-018-0698-6.

    Article  PubMed  Google Scholar 

  59. Simonpieri A, Gasparro R, Pantaleo G, Mignogna J, Riccitiello F, Sammartino G. Four-year post-loading results of full-arch rehabilitation with immediate placement and immediate loading implants: a retrospective controlled study. Quintessence Int. 2017;48(4):315–24. https://doi.org/10.3290/j.qi.a37894.

    Article  PubMed  Google Scholar 

  60. Zhao R, Yang R, Cooper PR, Khurshid Z, Shavandi A, Ratnayake J. Bone grafts and substitutes in dentistry: a review of current trends and developments. Molecules. 2021;26(10):1–27. https://doi.org/10.3390/molecules26103007.

    Article  Google Scholar 

  61. Gultekin BA, Cansiz E, Borahan MO. Clinical and 3-dimensional radiographic evaluation of autogenous iliac block bone grafting and guided bone regeneration in patients with atrophic maxilla. J Oral Maxillofac Surg. 2017;75(4):709–22. https://doi.org/10.1016/j.joms.2016.11.019.

    Article  PubMed  Google Scholar 

  62. Alper Gultekin B, et al. Evaluation of volumetric changes of augmented maxillary sinus with different bone grafting biomaterials. J Craniofac Surg. 2016;27(2):e144–8. https://doi.org/10.1097/SCS.0000000000002393.

    Article  PubMed  Google Scholar 

  63. Tabrizi R, Mir H, Sadeghi M, Hashemzadeh H, Jafari S. Evaluation of demineralized freeze-dried bone in augmentation of buccal defects during implant placement. Regen Reconstr Restor. 2016;1(2):75–8. https://doi.org/10.22037/rrr.v1i2.10524.

    Article  Google Scholar 

  64. Kacarevic ZP, et al. Purification processes of xenogeneic bone substitutes and their impact on tissue reactions and regeneration. Int J Artif Organs. 2018;41(11):789–800. https://doi.org/10.1177/0391398818771530.

    Article  Google Scholar 

  65. Georgiev T, Peev S, Arnautska H, Gencheva A, Gerdzhikov I. An evaluation of three-dimensional scans of the time-dependent volume changes in bone grafting materials. Int J Sci Res ISSN. 2015;6. https://doi.org/10.21275/ART20164039.

  66. Jelusic D, Zirk ML, Fienitz T, Plancak D, Puhar I, Rothamel D. Monophasic ß-TCP vs. biphasic HA/ß-TCP in two-stage sinus floor augmentation procedures – a prospective randomized clinical trial. Clin Oral Implants Res. 2017;28(10):e175–83. https://doi.org/10.1111/clr.12983.

    Article  PubMed  Google Scholar 

  67. Gultekin BA, Borahan O, Sirali A, Karabuda ZC, Mijiritsky E. Three-dimensional assessment of volumetric changes in sinuses augmented with two different bone substitutes. Biomed Res Int. 2016;2016:4085079. https://doi.org/10.1155/2016/4085079.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sushma Sonale MN, et al. Absorbable gelatin sponge versus alloplastic graft material as adjuvants in direct sinus lift procedures—a comparative study. J Dent Orofac Res. 2018;14(1):7–17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Barbeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rider, P., Kačarević, Ž.P., Fiedler, I.A.K., Alkildani, S., Busse, B., Barbeck, M. (2023). Imaging of Resorbable Bone Substitute Materials. In: Dard, M.M. (eds) Surgical Research in Implant Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-031-37234-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37234-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37233-9

  • Online ISBN: 978-3-031-37234-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics