Skip to main content

Biology of Low-Substitution Bone Substitutes

  • Chapter
  • First Online:
Surgical Research in Implant Dentistry

Abstract

Over 40 years have now passed since bone grafting materials were utilized for the regeneration of missing bone around teeth and dental implants. Today an ever-increasing number of bone substitute materials are available, each with various properties and characteristics. While bone grafts are typically classified into autografts, allografts, xenografts, and synthetic alloplasts, more recent research has focused on the prominent role of non-resorbable versus resorbable biomaterials. While it was originally thought that all bone grafts should be slowly resorbed or degraded and replaced with native bone over time, accumulating evidence has in fact suggested that the non-resorbable alternative may in fact be favored for certain clinical indications in implant dentistry. This chapter highlights the current use of low-substitution bone substitutes for contour augmentation and discusses their biological behavior in contrast to resorbable/degradable materials. Assessment by cellular and molecular methods both in vitro and in vivo are discussed, including appropriate study designs describing why cells derived from the monocytic lineage vary their resorption properties on various bone substitute materials. Lastly, histological evidence from clinical studies is presented with long-term follow-up demonstrating how these bone grafts, surrounded by large multinucleated giant cells, remain stable years following implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jung RE, Fenner N, Hammerle CH, Zitzmann NU. Long-term outcome of implants placed with guided bone regeneration (gbr) using resorbable and non-resorbable membranes after 12-14 years. Clin Oral Implants Res. 2013;24(10):1065–73.

    Article  PubMed  Google Scholar 

  2. Buser D, Dahlin C, Schenk R. Guided bone regeneration. Chicago, IL: Quintessence; 1994.

    Google Scholar 

  3. Buser D, Dula K, Belser U, Hirt HP, Berthold H. Localized ridge augmentation using guided bone regeneration. 1. Surgical procedure in the maxilla. Int J Periodont Restor Dent. 1993;13(1):29–45.

    Google Scholar 

  4. Dahlin C, Linde A, Gottlow J, Nyman S. Healing of bone defects by guided tissue regeneration. Plast Reconstr Surg. 1988;81(5):672–6.

    Article  PubMed  Google Scholar 

  5. Hardwick R, Dahlin C. Healing pattern of bone regeneration in membrane-protected defects: a histologic study in the canine mandible. Int J Oral Maxillofac Implants. 1994;9(1):13–29.

    PubMed  Google Scholar 

  6. Miron RJ, Sculean A, Shuang Y, Bosshardt DD, Gruber R, Buser D, Chandad F, Zhang Y. Osteoinductive potential of a novel biphasic calcium phosphate bone graft in comparison with autographs, xenografts, and dfdba. Clin Oral Implants Res. 2016a;27(6):668–75.

    Article  PubMed  Google Scholar 

  7. Miron RJ, Gruber R, Hedbom E, Saulacic N, Zhang Y, Sculean A, Bosshardt DD, Buser D. Impact of bone harvesting techniques on cell viability and the release of growth factors of autografts. Clin Implant Dent Relat Res. 2013;15(4):481–9.

    Article  PubMed  Google Scholar 

  8. Miron RJ, Hedbom E, Saulacic N, Zhang Y, Sculean A, Bosshardt DD, Buser D. Osteogenic potential of autogenous bone grafts harvested with four different surgical techniques. J Dent Res. 2011;90(12):1428–33.

    Article  PubMed  Google Scholar 

  9. Sanz M, Vignoletti F. Key aspects on the use of bone substitutes for bone regeneration of edentulous ridges. Dent Mater. 2015;31(6):640–7.

    Article  PubMed  Google Scholar 

  10. Buser D, Chen ST, Weber HP, Belser UC. Early implant placement following single-tooth extraction in the esthetic zone: biologic rationale and surgical procedures. Int J Periodont Restor Dent. 2008;28(5):441.

    Google Scholar 

  11. Istvan A, Monje A, Wang DH-L. Vertical ridge augmentation and soft tissue reconstruction of the anterior atrophic maxillae: a case series. Int J Periodont Restor Dent. 2015;35:613–23.

    Google Scholar 

  12. Broggini N, Bosshardt DD, Jensen SS, Bornstein MM, Wang CC, Buser D. Bone healing around nanocrystalline hydroxyapatite, deproteinized bovine bone mineral, biphasic calcium phosphate, and autogenous bone in mandibular bone defects. J Biomed Mater Res B Appl Biomater. 2015;103(7):1478–87.

    Article  PubMed  Google Scholar 

  13. Jensen SS, Aaboe M, Janner SF, Saulacic N, Bornstein MM, Bosshardt DD, Buser D. Influence of particle size of deproteinized bovine bone mineral on new bone formation and implant stability after simultaneous sinus floor elevation: a histomorphometric study in minipigs. Clin Implant Dent Relat Res. 2015a;17(2):274–85.

    Article  PubMed  Google Scholar 

  14. Martinez FO, Gordon S. The m1 and m2 paradigm of macrophage activation: time for reassessment. F1000prime Rep. 2014;6:13.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Miron RJ, Bosshardt DD. Osteomacs: key players around bone biomaterials. Biomaterials. 2016;82:1–19.

    Article  PubMed  Google Scholar 

  16. Batoon L, Millard SM, Raggatt LJ, Pettit AR. Osteomacs and bone regeneration. Curr Osteopor Rep. 2017;15(4):385–95.

    Article  Google Scholar 

  17. Davison NL, Gamblin AL, Layrolle P, Yuan H, de Bruijn JD, Barrere-de Groot F. Liposomal clodronate inhibition of osteoclastogenesis and osteoinduction by submicrostructured beta-tricalcium phosphate. Biomaterials. 2014;35(19):5088–97.

    Article  PubMed  Google Scholar 

  18. Chang MK, Raggatt LJ, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K, Maylin ER, Ripoll VM, Hume DA, Pettit AR. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol. 2008;181(2):1232–44.

    Article  PubMed  Google Scholar 

  19. Vasconcelos DP, Costa M, Amaral IF, Barbosa MA, Aguas AP, Barbosa JN. Modulation of the inflammatory response to chitosan through m2 macrophage polarization using pro-resolution mediators. Biomaterials. 2015;37:116–23.

    Article  PubMed  Google Scholar 

  20. Barbeck M, Booms P, Unger R, Hoffmann V, Sader R, Kirkpatrick CJ, Ghanaati S. Multinucleated giant cells in the implant bed of bone substitutes are foreign body giant cells-new insights into the material-mediated healing process. J Biomed Mater Res A. 2017;105(4):1105–11.

    Article  PubMed  Google Scholar 

  21. Jensen SS, Bosshardt DD, Gruber R, Buser D. Long-term stability of contour augmentation in the esthetic zone: histologic and histomorphometric evaluation of 12 human biopsies 14 to 80 months after augmentation. J Periodontol. 2014;85(11):1549–56.

    Article  PubMed  Google Scholar 

  22. Jensen SS, Gruber R, Buser D, Bosshardt DD. Osteoclast-like cells on deproteinized bovine bone mineral and biphasic calcium phosphate: light and transmission electron microscopical observations. Clin Oral Implants Res. 2015b;26(8):859–64.

    Article  PubMed  Google Scholar 

  23. Chistiakov DA, Bobryshev YV, Nikiforov NG, Elizova NV, Sobenin IA, Orekhov AN. Macrophage phenotypic plasticity in atherosclerosis: the associated features and the peculiarities of the expression of inflammatory genes. Int J Cardiol. 2015a;184:436–45.

    Article  PubMed  Google Scholar 

  24. Chistiakov DA, Bobryshev YV, Orekhov AN. Changes in transcriptome of macrophages in atherosclerosis. J Cell Mol Med. 2015b;19(6):1163–73.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mills CD, Lenz LL, Ley K. Macrophages at the fork in the road to health or disease. Front Immunol. 2015;6:59.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Roma-Lavisse C, Tagzirt M, Zawadzki C, Lorenzi R, Vincentelli A, Haulon S, Juthier F, Rauch A, Corseaux D, Staels B, et al. M1 and m2 macrophage proteolytic and angiogenic profile analysis in atherosclerotic patients reveals a distinctive profile in type 2 diabetes. Diab Vasc Dis Res. 2015;12(4):279–89.

    Article  PubMed  Google Scholar 

  27. Swier VJ, Tang L, Radwan MM, Hunter WJ III, Agrawal DK. The role of high cholesterol-high fructose diet on coronary arteriosclerosis. Histol Histopathol. 2015;31:167.

    PubMed  Google Scholar 

  28. Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013;496(7446):445–55.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Davies LC, Jenkins SJ, Allen JE, Taylor PR. Tissue-resident macrophages. Nat Immunol. 2013a;14(10):986–95.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Davies LC, Rosas M, Jenkins SJ, Liao CT, Scurr MJ, Brombacher F, Fraser DJ, Allen JE, Jones SA, Taylor PR. Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation. Nat Commun. 2013b;4:1886.

    Article  PubMed  Google Scholar 

  31. Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, Becker CD, See P, Price J, Lucas D, et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity. 2013;38(4):792–804.

    Article  PubMed  Google Scholar 

  32. Winkler IG, Sims NA, Pettit AR, Barbier V, Nowlan B, Helwani F, Poulton IJ, van Rooijen N, Alexander KA, Raggatt LJ, et al. Bone marrow macrophages maintain hematopoietic stem cell (hsc) niches and their depletion mobilizes hscs. Blood. 2010;116(23):4815–28.

    Article  PubMed  Google Scholar 

  33. Cecchini MG, Dominguez MG, Mocci S, Wetterwald A, Felix R, Fleisch H, Chisholm O, Hofstetter W, Pollard JW, Stanley ER. Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse. Development. 1994;120(6):1357–72.

    Article  PubMed  Google Scholar 

  34. Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, Sylvestre V, Stanley ER. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood. 2002;99(1):111–20.

    Article  PubMed  Google Scholar 

  35. Wiktor-Jedrzejczak W, Gordon S. Cytokine regulation of the macrophage (m phi) system studied using the colony stimulating factor-1-deficient op/op mouse. Physiol Rev. 1996;76(4):927–47.

    Article  PubMed  Google Scholar 

  36. Passlick B, Flieger D, Ziegler-Heitbrock HW. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood. 1989;74(7):2527–34.

    Article  PubMed  Google Scholar 

  37. Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD, van Rooijen N, MacDonald AS, Allen JE. Local macrophage proliferation, rather than recruitment from the blood, is a signature of th2 inflammation. Science. 2011;332(6035):1284–8.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jenkins SJ, Ruckerl D, Thomas GD, Hewitson JP, Duncan S, Brombacher F, Maizels RM, Hume DA, Allen JE. Il-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by csf-1. J Exp Med. 2013;210(11):2477–91.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hume DA, Ross IL, Himes SR, Sasmono RT, Wells CA, Ravasi T. The mononuclear phagocyte system revisited. J Leukoc Biol. 2002;72(4):621–7.

    Article  PubMed  Google Scholar 

  40. Theurl I, Fritsche G, Ludwiczek S, Garimorth K, Bellmann-Weiler R, Weiss G. The macrophage: a cellular factory at the interphase between iron and immunity for the control of infections. Biometals. 2005;18(4):359–67.

    Article  PubMed  Google Scholar 

  41. Austyn JM, Gordon S. F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur J Immunol. 1981;11(10):805–15.

    Article  PubMed  Google Scholar 

  42. Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, et al. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the odf/rankl-rank interaction. J Exp Med. 2000;191(2):275–86.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Stacey KJ, Sweet MJ, Hume DA. Macrophages ingest and are activated by bacterial DNA. J Immunol. 1996;157(5):2116–22.

    Article  PubMed  Google Scholar 

  44. Lipford GB, Sparwasser T, Bauer M, Zimmermann S, Koch ES, Heeg K, Wagner H. Immunostimulatory DNA: sequence-dependent production of potentially harmful or useful cytokines. Eur J Immunol. 1997;27(12):3420–6.

    Article  PubMed  Google Scholar 

  45. Sparwasser T, Miethke T, Lipford G, Erdmann A, Hacker H, Heeg K, Wagner H. Macrophages sense pathogens via DNA motifs: induction of tumor necrosis factor-alpha-mediated shock. Eur J Immunol. 1997;27(7):1671–9.

    Article  PubMed  Google Scholar 

  46. Jimi E, Nakamura I, Duong LT, Ikebe T, Takahashi N, Rodan GA, Suda T. Interleukin 1 induces multinucleation and bone-resorbing activity of osteoclasts in the absence of osteoblasts/stromal cells. Exp Cell Res. 1999;247(1):84–93.

    Article  PubMed  Google Scholar 

  47. Heymann F, Trautwein C, Tacke F. Monocytes and macrophages as cellular targets in liver fibrosis. Inflamm Allergy Drug Targets. 2009;8(4):307–18.

    Article  PubMed  Google Scholar 

  48. Moreira AP, Hogaboam CM. Macrophages in allergic asthma: fine-tuning their pro- and anti-inflammatory actions for disease resolution. J Interf Cytokine Res. 2011;31(6):485–91.

    Article  Google Scholar 

  49. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958–69.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ricardo SD, van Goor H, Eddy AA. Macrophage diversity in renal injury and repair. J Clin Invest. 2008;118(11):3522–30.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Novoselov VV, Sazonova MA, Ivanova EA, Orekhov AN. Study of the activated macrophage transcriptome. Exp Mol Pathol. 2015;99(3):575–80.

    Article  PubMed  Google Scholar 

  52. Novak ML, Koh TJ. Macrophage phenotypes during tissue repair. J Leukoc Biol. 2013;93(6):875–81.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3(1):23–35.

    Article  PubMed  Google Scholar 

  54. Louis CA, Mody V, Henry WL Jr, Reichner JS, Albina JE. Regulation of arginase isoforms i and ii by il-4 in cultured murine peritoneal macrophages. Am J Physiol. 1999;276(1 Pt 2):R237–42.

    PubMed  Google Scholar 

  55. Mosser DM. The many faces of macrophage activation. J Leukoc Biol. 2003;73(2):209–12.

    Article  PubMed  Google Scholar 

  56. Song E, Ouyang N, Horbelt M, Antus B, Wang M, Exton MS. Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cell Immunol. 2000;204(1):19–28.

    Article  PubMed  Google Scholar 

  57. Anderson CF, Gerber JS, Mosser DM. Modulating macrophage function with igg immune complexes. J Endotoxin Res. 2002;8(6):477–81.

    Article  PubMed  Google Scholar 

  58. Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol. 2005;175(1):342–9.

    Article  PubMed  Google Scholar 

  59. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–42.

    Article  PubMed  Google Scholar 

  60. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5(12):953–64.

    Article  PubMed  Google Scholar 

  61. Lay G, Poquet Y, Salek-Peyron P, Puissegur MP, Botanch C, Bon H, Levillain F, Duteyrat JL, Emile JF, Altare F. Langhans giant cells from m. Tuberculosis-induced human granulomas cannot mediate mycobacterial uptake. J Pathol. 2007;211(1):76–85.

    Article  PubMed  Google Scholar 

  62. Lorenz J, Kubesch A, Korzinskas T, Barbeck M, Landes C, Sader RA, Kirkpatrick CJ, Ghanaati S. Trap-positive multinucleated giant cells are foreign body giant cells rather than osteoclasts: results from a split-mouth study in humans. J Oral Implantol. 2015;41(6):e257–66.

    Article  PubMed  Google Scholar 

  63. Trindade R, Albrektsson T, Tengvall P, Wennerberg A. Foreign body reaction to biomaterials: on mechanisms for buildup and breakdown of osseointegration. Clin Implant Dent Relat Res. 2014;18:192.

    Article  PubMed  Google Scholar 

  64. Teitelbaum SL. Osteoporosis and integrins. J Clin Endocrinol Metab. 2005;90(4):2466–8.

    Article  PubMed  Google Scholar 

  65. McNally AK, Anderson JM. Beta1 and beta2 integrins mediate adhesion during macrophage fusion and multinucleated foreign body giant cell formation. Am J Pathol. 2002;160(2):621–30.

    Article  PubMed  PubMed Central  Google Scholar 

  66. McNally AK, Macewan SR, Anderson JM. Alpha subunit partners to beta1 and beta2 integrins during il-4-induced foreign body giant cell formation. J Biomed Mater Res A. 2007;82(3):568–74.

    Article  PubMed  Google Scholar 

  67. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, et al. Opgl is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 1999;397(6717):315–23.

    Article  PubMed  Google Scholar 

  68. Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem. 2010;285(33):25103–8.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Van Wesenbeeck L, Odgren PR, MacKay CA, D’Angelo M, Safadi FF, Popoff SN, Van Hul W, Marks SC Jr. The osteopetrotic mutation toothless (tl) is a loss-of-function frameshift mutation in the rat csf1 gene: evidence of a crucial role for csf-1 in osteoclastogenesis and endochondral ossification. Proc Natl Acad Sci U S A. 2002;99(22):14303–8.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wiktor-Jedrzejczak W, Bartocci A, Ferrante AW Jr, Ahmed-Ansari A, Sell KW, Pollard JW, Stanley ER. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci U S A. 1990;87(12):4828–32.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89(2):309–19.

    Article  PubMed  Google Scholar 

  72. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20(2):86–100.

    Article  PubMed  Google Scholar 

  73. Ingham E, Fisher J. The role of macrophages in osteolysis of total joint replacement. Biomaterials. 2005;26(11):1271–86.

    Article  PubMed  Google Scholar 

  74. Nich C, Takakubo Y, Pajarinen J, Ainola M, Salem A, Sillat T, Rao AJ, Raska M, Tamaki Y, Takagi M, et al. Macrophages-key cells in the response to wear debris from joint replacements. J Biomed Mater Res A. 2013;101(10):3033–45.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Rao AJ, Gibon E, Ma T, Yao Z, Smith RL, Goodman SB. Revision joint replacement, wear particles, and macrophage polarization. Acta Biomater. 2012;8(7):2815–23.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Santerre J, Woodhouse K, Laroche G, Labow R. Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials. Biomaterials. 2005;26(35):7457–70.

    Article  PubMed  Google Scholar 

  77. Yang SY, Yu H, Gong W, Wu B, Mayton L, Costello R, Wooley PH. Murine model of prosthesis failure for the long-term study of aseptic loosening. J Orthop Res. 2007;25(5):603–11.

    Article  PubMed  Google Scholar 

  78. Brodbeck WG, Anderson JM. Giant cell formation and function. Curr Opin Hematol. 2009;16(1):53–7.

    Article  PubMed  PubMed Central  Google Scholar 

  79. McNally AK, Anderson JM. Interleukin-4 induces foreign body giant cells from human monocytes/macrophages. Differential lymphokine regulation of macrophage fusion leads to morphological variants of multinucleated giant cells. Am J Pathol. 1995;147(5):1487–99.

    PubMed  PubMed Central  Google Scholar 

  80. Helming L, Gordon S. Macrophage fusion induced by il-4 alternative activation is a multistage process involving multiple target molecules. Eur J Immunol. 2007;37(1):33–42.

    Article  PubMed  Google Scholar 

  81. Lemaire I, Falzoni S, Leduc N, Zhang B, Pellegatti P, Adinolfi E, Chiozzi P, Di Virgilio F. Involvement of the purinergic p2x7 receptor in the formation of multinucleated giant cells. J Immunol. 2006;177(10):7257–65.

    Article  PubMed  Google Scholar 

  82. McNally AK, Anderson JM. Multinucleated giant cell formation exhibits features of phagocytosis with participation of the endoplasmic reticulum. Exp Mol Pathol. 2005;79(2):126–35.

    Article  PubMed  Google Scholar 

  83. Moreno JL, Mikhailenko I, Tondravi MM, Keegan AD. Il-4 promotes the formation of multinucleated giant cells from macrophage precursors by a stat6-dependent, homotypic mechanism: contribution of e-cadherin. J Leukoc Biol. 2007;82(6):1542–53.

    Article  PubMed  Google Scholar 

  84. Rodriguez A, Macewan SR, Meyerson H, Kirk JT, Anderson JM. The foreign body reaction in t-cell-deficient mice. J Biomed Mater Res A. 2009;90(1):106–13.

    Article  PubMed  Google Scholar 

  85. McNally AK, Anderson JM. Foreign body-type multinucleated giant cells induced by interleukin-4 express select lymphocyte co-stimulatory molecules and are phenotypically distinct from osteoclasts and dendritic cells. Exp Mol Pathol. 2011;91(3):673–81.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Tintut Y, Patel J, Territo M, Saini T, Parhami F, Demer LL. Monocyte/macrophage regulation of vascular calcification in vitro. Circulation. 2002;105(5):650–5.

    Article  PubMed  Google Scholar 

  87. Landsman L, Bar-On L, Zernecke A, Kim KW, Krauthgamer R, Shagdarsuren E, Lira SA, Weissman IL, Weber C, Jung S. Cx3cr1 is required for monocyte homeostasis and atherogenesis by promoting cell survival. Blood. 2009;113(4):963–72.

    Article  PubMed  Google Scholar 

  88. Oh J, Riek AE, Weng S, Petty M, Kim D, Colonna M, Cella M, Bernal-Mizrachi C. Endoplasmic reticulum stress controls m2 macrophage differentiation and foam cell formation. J Biol Chem. 2012;287(15):11629–41.

    Article  PubMed  PubMed Central  Google Scholar 

  89. ten Harkel B, Schoenmaker T, Picavet DI, Davison NL, de Vries TJ, Everts V. The foreign body giant cell cannot resorb bone, but dissolves hydroxyapatite like osteoclasts. PLoS One. 2015;10(10):e0139564.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Jonitz-Heincke A, Lochner K, Schulze C, Pohle D, Pustlauk W, Hansmann D, Bader R. Contribution of human osteoblasts and macrophages to bone matrix degradation and proinflammatory cytokine release after exposure to abrasive endoprosthetic wear particles. Mol Med Rep. 2016;14(2):1491–500.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Miron RJ, Zohdi H, Fujioka-Kobayashi M, Bosshardt DD. Giant cells around bone biomaterials: osteoclasts or multi-nucleated giant cells? Acta Biomater. 2016b;46:15–28.

    Article  PubMed  Google Scholar 

  92. Modolell M, Corraliza IM, Link F, Soler G, Eichmann K. Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-derived macrophages by th1 and th2 cytokines. Eur J Immunol. 1995;25(4):1101–4.

    Article  PubMed  Google Scholar 

  93. Mylonas KJ, Nair MG, Prieto-Lafuente L, Paape D, Allen JE. Alternatively activated macrophages elicited by helminth infection can be reprogrammed to enable microbial killing. J Immunol. 2009;182(5):3084–94.

    Article  PubMed  Google Scholar 

  94. Rutschman R, Lang R, Hesse M, Ihle JN, Wynn TA, Murray PJ. Cutting edge: Stat6-dependent substrate depletion regulates nitric oxide production. J Immunol. 2001;166(4):2173–7.

    Article  PubMed  Google Scholar 

  95. Schneemann M, Schoeden G. Macrophage biology and immunology: man is not a mouse. J Leukoc Biol. 2007;81(3):579; discussion 580.

    Article  PubMed  Google Scholar 

  96. Schneemann M, Schoedon G. Species differences in macrophage no production are important. Nat Immunol. 2002;3(2):102.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Miron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miron, R.J., Zhang, Y., Bosshardt, D.D. (2023). Biology of Low-Substitution Bone Substitutes. In: Dard, M.M. (eds) Surgical Research in Implant Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-031-37234-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37234-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37233-9

  • Online ISBN: 978-3-031-37234-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics