Skip to main content

A Parametric Tool for Outdoor Shade Design: Harnessing Quantitative Indices and Visual Feedback for Effective and Efficient Climatic Design of Streets

  • 440 Accesses

Part of the Communications in Computer and Information Science book series (CCIS,volume 1819)

Abstract

To date, there is a lack of orderly and data-based methods for quantifying, evaluating, and benchmarking street-level outdoor shade in streets and urban public spaces. The lack of such methods impedes the effective design of walkable and liveable outdoors in locations where shading is essential for significantly mitigating outdoor heat stress. To address this shortcoming, we have developed Kikayon, a relatively simple parametric tool that allows planners and designers to easily compare the effect of design alternatives on outdoor shade provision based on building geometry and tree canopy morphologies while taking into account the variance of exposure to solar radiation at different times. The tool calculates several shade and tree indices, some we have originally developed, for each street design, giving users quick and straightforward feedback and enabling them to quantitatively compare design alternatives. Our tool is implemented as a Grasshopper code that harnesses several components of the Ladybug Tools suite.

Keywords

  • Urban Microclimate
  • Shade Maps
  • Parametric Urban Design
  • Heat Stress
  • Outdoor Shade

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arnfield, A.J.: Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 23, 1–26 (2003). https://doi.org/10.1002/joc.859

    CrossRef  Google Scholar 

  2. Johansson, E., Emmanuel, R.: The influence of urban design on outdoor thermal comfort in the hot, humid city of Colombo. Sri Lanka. Int. J. Biometeorol. 51, 119–133 (2014). https://doi.org/10.1007/s00484-006-0047-6

    CrossRef  Google Scholar 

  3. Kleerekoper, L., van Esch, M., Salcedo, T.B.: How to make a city climate-proof, addressing the urban heat island effect. Resour. Conserv. Recycl. 64, 30–38 (2012). https://doi.org/10.1016/j.resconrec.2011.06.004

    CrossRef  Google Scholar 

  4. Nikolopoulou, M., Baker, N., Steemers, K.: Thermal comfort in outdoor urban spaces: understanding the Human parameter. Sol. Energy. 70, 227–235 (2001). https://doi.org/10.1016/S0038-092X(00)00093-1

    CrossRef  Google Scholar 

  5. Oke, T.R.: Canyon geometry and the nocturnal urban heat island: comparison of scale model and field observations. J. Climatol. 1, 237–254 (1981). https://doi.org/10.1002/joc.3370010304

    CrossRef  Google Scholar 

  6. Colter, K.R., Middel, A., Martin, C.A.: Effects of natural and artificial shade on human thermal comfort in residential neighborhood parks of Phoenix, Arizona, USA. Urban For. Urban Green. 44, 126429 (2019). https://doi.org/10.1016/j.ufug.2019.126429

    CrossRef  Google Scholar 

  7. Coutts, A.M., White, E.C., Tapper, N.J., Beringer, J., Livesley, S.J.: Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theoret. Appl. Climatol. 124, 55–68 (2015). https://doi.org/10.1007/s00704-015-1409-y

    CrossRef  Google Scholar 

  8. Middel, A., Krayenhoff, E.S.: Micrometeorological determinants of pedestrian thermal exposure during record-breaking heat in Tempe, Arizona: introducing the MaRTy observational platform. Sci. Total Environ. 687, 137–151 (2019). https://doi.org/10.1016/j.scitotenv.2019.06.085

    CrossRef  Google Scholar 

  9. Middel, A., AlKhaled, S., Schneider, F.A., Hagen, B., Coseo, P.: 50 grades of shade. Bull. Am. Meteorol. Soc. 102, 1–35 (2021). https://doi.org/10.1175/BAMS-D-20-0193.1

    CrossRef  Google Scholar 

  10. Aleksandrowicz, O., Pearlmutter, D.: The significance of shade provision in reducing street-level summer heat stress in a hot Mediterranean climate. Landsc. Urban Plan. 229, 104588 (2023). https://doi.org/10.1016/j.landurbplan.2022.104588

    CrossRef  Google Scholar 

  11. Lee, H., Holst, J., Mayer, H.: Modification of human-biometeorologically significant radiant flux densities by shading as local method to mitigate heat stress in summer within urban street canyons. Adv. Meteorol. 2013, 1–13 (2013). https://doi.org/10.1155/2013/312572

    CrossRef  Google Scholar 

  12. Lee, I., Voogt, J.A., Gillespie, T.: Analysis and comparison of shading strategies to increase human thermal comfort in urban areas. Atmosphere (Basel). 9, 91 (2018). https://doi.org/10.3390/atmos9030091

  13. Shashua-Bar, L., Pearlmutter, D., Erell, E.: The influence of trees and grass on outdoor thermal comfort in a hot-arid environment. Int. J. Climatol. 31, 1498–1506 (2011). https://doi.org/10.1002/joc.2177

    CrossRef  Google Scholar 

  14. Gandini, S., Autier, P., Boniol, M.: Reviews on sun exposure and artificial light and melanoma. Prog. Biophys. Mol. Biol. 107, 362–366 (2011). https://doi.org/10.1016/j.pbiomolbio.2011.09.011

    CrossRef  Google Scholar 

  15. Erell, E., Pearlmutter, D., Williamson, T.J.: Urban microclimate: Designing the Spaces Between Buildings. Earthscan, London and Washington, DC (2011)

    Google Scholar 

  16. Bröde, P., et al.: The universal thermal climate index UTCI compared to ergonomics standards for assessing the thermal environment. Ind. Health. 51, 16–24 (2013). https://doi.org/10.2486/indhealth.2012-0098

    CrossRef  Google Scholar 

  17. Matzarakis, A., Mayer, H., Iziomon, M.G.: Applications of a universal thermal index: physiological equivalent temperature. Int. J. Biometeorol. 43, 76–84 (1999). https://doi.org/10.1007/s004840050119

    CrossRef  Google Scholar 

  18. Matzarakis, A., Muthers, S., Rutz, F.: Application and comparison of UTCI and PET in temperate climate conditions. Finisterra. 49 (2014). https://doi.org/10.18055/Finis6453

  19. Givoni, B.: Man, Climate and Architecture. Elsevier, Amsterdam (1969)

    Google Scholar 

  20. Pearlmutter, D., Berliner, P., Shaviv, E.: Integrated modeling of pedestrian energy exchange and thermal comfort in urban street canyons. Build. Environ. 42, 2396–2409 (2007). https://doi.org/10.1016/j.buildenv.2006.06.006

    CrossRef  Google Scholar 

  21. Aleksandrowicz, O., Vuckovic, M., Kiesel, K., Mahdavi, A.: Current trends in urban heat island mitigation research: observations based on a comprehensive research repository. Urban Clim. 21, 1–26 (2017)

    Google Scholar 

  22. Hebbert, M., Mackillop, F.: Urban climatology applied to urban planning: a postwar knowledge circulation failure. Int. J. Urban Reg. Res. 37, 1542–1558 (2013). https://doi.org/10.1111/1468-2427.12046

    CrossRef  Google Scholar 

  23. Mills, G.: Urban climatology: history, status and prospects. Urban Clim. 10, 479–489 (2014). https://doi.org/10.1016/j.uclim.2014.06.004

    CrossRef  Google Scholar 

  24. Erell, E.: The application of urban climate research in the design of cities. Adv. Build. Energy Res. 2, 95–121 (2008). https://doi.org/10.3763/aber.2008.0204

    CrossRef  Google Scholar 

  25. Shorris, A.: Cool Neighborhoods NYC: A Comprehensive Approach to Keep Communities Safe in Extreme Heat. New Yotk City’s Mayor’s Office of Recovery and Resiliency, New York (2017)

    Google Scholar 

  26. Osmond, P., Sharifi, E.: Guide to Cooling Strategies, pp. 1–72 (2017)

    Google Scholar 

  27. Brandenburg, C., Damyanovic, D., Reinwald, F., Allex, B., Gantner, B., Czachs, C.: Urban Heat Island Strategy: City of Vienna. Vienna Environmental Protection Department (MA22), Vienna (2018)

    Google Scholar 

  28. Francis, J., Hall, G., Murphy, S., Rayner, J.: Growing Green Guide: A Guide to Green Roofs, Walls and Facades in Melbourne and Victoria, Australia. Department of Environment and Primary Industries, State of Victoria, Melbourne (2014)

    Google Scholar 

  29. Ruefenacht, L., Acero, J.A.: Strategies for Cooling Singapore. Singapore ETH Centre, Singapore (2017)

    Google Scholar 

  30. Tel Aviv-Yafo Municipality: Climate Adaptation Action Plan (2020)

    Google Scholar 

  31. Peeters, A., et al.: A decision support tool for calculating effective shading in urban streets. Urban Clim. 34, 100672 (2020). https://doi.org/10.1016/j.uclim.2020.100672

    CrossRef  Google Scholar 

  32. Aleksandrowicz, O., Zur, S., Lebendiger, Y., Lerman, Y.: Shade maps for prioritizing municipal microclimatic action in hot climates: learning from Tel Aviv-Yafo. Sustain. Cities Soc. 53, 101931 (2020). https://doi.org/10.1016/j.scs.2019.101931

    CrossRef  Google Scholar 

  33. Aleksandrowicz, O.: Mapping and management of urban shade assets: a novel approach for promoting climatic urban action. In: Khan, A., Akbari, H., Fiorito, F., Mithun, S., and Niyogi, D. (eds.) Global Urban Heat Island Mitigation, pp. 1–27. Elsevier, Amsterdam, Netherlands ; Kidlington, Oxford, England ; Cambridge, Massachusetts (2022)

    Google Scholar 

  34. Sadeghipour Roudsari, M., Pak, M.: Ladybug: a parametric environmental plugin for Grasshopper to help designers create an environmentally-conscious design. In: BS2013: 13th International IBPSA Conference, Chambéry, France (2013)

    Google Scholar 

  35. Urban, J.: Two different approaches to improve growing conditions for trees comparing Silva cells and structural soil. Am. Soc. Consult. Arborists. 46, 5–14 (2013)

    Google Scholar 

  36. Aleksandrowicz, O., Vuckovic, M., Kiesel, K., Mahdavi, A.: Current trends in urban heat island mitigation research: observations based on a comprehensive research repository. Urban Clim. 21, 1–26 (2017). https://doi.org/10.1016/j.uclim.2017.04.002

    CrossRef  Google Scholar 

  37. ENVI-met v. 4.3.2. http://www.envi-met.com (2018)

  38. Lindberg, F., et al.: Urban Multi-scale Environmental Predictor (UMEP): an integrated tool for city-based climate services. Environ. Model. Softw. 99, 70–87 (2018). https://doi.org/10.1016/j.envsoft.2017.09.020

    CrossRef  Google Scholar 

Download references

Acknowledgement

The development of the tool was supported by the Israel.100 initiative. The authors would like to thank Arch. Shamay Assif for his ongoing support and Arch. Omri Ben-Chetrit for his valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Or Aleksandrowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aleksandrowicz, O., Ozery, E. (2023). A Parametric Tool for Outdoor Shade Design: Harnessing Quantitative Indices and Visual Feedback for Effective and Efficient Climatic Design of Streets. In: Turrin, M., Andriotis, C., Rafiee, A. (eds) Computer-Aided Architectural Design. INTERCONNECTIONS: Co-computing Beyond Boundaries. CAAD Futures 2023. Communications in Computer and Information Science, vol 1819. Springer, Cham. https://doi.org/10.1007/978-3-031-37189-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37189-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37188-2

  • Online ISBN: 978-3-031-37189-9

  • eBook Packages: Computer ScienceComputer Science (R0)