Skip to main content

Modeling and Simulation of Double-Acting Hydropneumatic Suspension System for 6×6 Terrain Vehicle with Different Performance Parameters

  • Conference paper
  • First Online:
New Technologies and Developments in Unmanned Systems (ISUDEF 2022)

Abstract

Hydropneumatic suspensions are widely used, especially in heavy vehicles. In this study, a double-acting version of hydropneumatic suspension is studied. A dynamic model of two degrees of freedom (DOF) quarter car is created with the help of MATLAB/Simulink software. The suspension structure of a 6x6 vehicle is used as the basis for kinematic relationships. The tire properties are considered in the model as an additional DOF to achieve more realistic results. Parameter set of a 14.00 R20 tire with 160G load index is used in the tire model. The resulting dynamic model was analyzed for a road profile representing a bump.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

m us :

Unsprung mass, 400 [kg]

m s :

Sprung mass, 1200 [kg]

Av1, Av2:

Orifice area, 0.3 × 10−4 [m2]

A pis :

Piston area, 0.007 [m2]

V30, V40:

Accumulator gas volume, 0.0045 [m3], 0.0010 [m3.]

A r :

Rod area, 0.0042 [m2]

A pr :

Area between the rod and piston, 0.0028 [m2]

l arm :

Suspension connection arm length, 0.8 [m]

l susp :

Suspension arm length, 0.316 [m]

l cons :

Distance between the connection of piston and arm rod with sprung mass, 0.917 [m]

k tspring :

Tire stiffness, \( \mathrm{800,000}\ \left[\frac{\mathrm{N}}{\mathrm{m}}\right] \)

β :

Angle between lcons and lateral axis

z s :

Sprung mass displacement

z us :

Unsprung mass displacement

θ arm :

Angle between suspension arm and longitudinal axis

h 0 :

Distance from highest point of the arm to the ground

D susp :

Suspension displacement

References

  • Bauer, W. (2011). Hydropneumatic suspension systems (pp. 19–66). Springer.

    Google Scholar 

  • Hassaan, G. A. (2014). Car dynamics using quarter model and passive suspension, part I: Effect of suspension damping and car speed. International Journal of Computer Techniques, 1(2), 1–9.

    Google Scholar 

  • International Organization for Standardization [ISO] (Geneva). (1997). Mechanical vibration and shock-evaluation of human exposure to whole-body vibration-Part 1: General requirements (2631–1).

    Google Scholar 

  • Joo, F. R. (1991). Dynamic analysis of a hydropneumatic suspension system (Doctoral dissertation). Concordia University.

    Google Scholar 

  • Kocakulak, T., Çokgünlü, S. A., & Konukseven, E. İ. (2019, September). 6 × 6 Taktik Tekerlekli Askeri Kara Platformu Üzerinde Kullanılacak Hidropnömatik Süspansiyon Sisteminin Modellenmesi ve Sistem Elemanlarının Sönümlemeye Etkisinin İncelenmesi. In International symposium on automotive science and technology (pp. 99–110).

    Google Scholar 

  • Luty, W., & Simiński, P. (2008). Analiza sprężystości promieniowej ogumienia 14.00 R20 z wkładką typu RUN-FLAT. Czasopismo Techniczne. Mechanika, 105(6-M), 131–138.

    Google Scholar 

  • Oscarsson, M. (2015). A hydropneumatic suspension parameter study on heavy multi-axle vehicle handling. Royal Institute of Technology.

    Google Scholar 

  • Reddy, C. V., Shankapal, S. R., & Gowda, M. H. (2014). Modelling and simulation of hydropneumatic suspension for a car. SASTech-Technical Journal of RUAS, 13(1), 24–30.

    Google Scholar 

  • Sağlam, F. (2016). Optimization of ride comfort for vehicles equipped with passive and active hydropneumatic suspensions. Middle East Technical University.

    Google Scholar 

  • Sağlam, F., & Ünlüsoy, Y. S. (2014). Hidro-Pnömatik Süspansiyonlu Araçlar İçin Tümleşik Sürüş Konforu ve Yükseklik Kontrolü. OTEKON, 14(7), 26–27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaan Berke Ulusoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ulusoy, K.B., Değirmenci, B., Türedi, D., Filiz, E., Karaman, M., Konukseven, E.İ. (2023). Modeling and Simulation of Double-Acting Hydropneumatic Suspension System for 6×6 Terrain Vehicle with Different Performance Parameters. In: Karakoc, T.H., Le Clainche, S., Chen, X., Dalkiran, A., Ercan, A.H. (eds) New Technologies and Developments in Unmanned Systems. ISUDEF 2022. Sustainable Aviation. Springer, Cham. https://doi.org/10.1007/978-3-031-37160-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37160-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37159-2

  • Online ISBN: 978-3-031-37160-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics