Skip to main content

Urbanization and Sustainable Urban Planning

  • Chapter
  • First Online:
Green Infrastructure and Urban Climate Resilience

Abstract

Urban sprawl, also known as urban encroachment, is a low-density, intermittent advancement model that includes complicated multiple interactions of the social, ecological, economic, psychological, physical, structural, and engineering systems; it is highly complex and unpredictable in resilient city development. The disorderly growth of cities has irreversible environmental consequences. It is mostly represented in the expansion of the built environment and the encroachment of farmland, forestland, and grasslands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vargas-Hernández, J. G., & Zdunek-Wielgołaska, J. (2020). Urban green infrastructure as a tool for controlling the resilience of urban sprawl. Environment, Development and Sustainability, 0123456789. https://doi.org/10.1007/s10668-020-00623-2

  2. Teresa, A. R. (2020). Front yards as green infrastructure: Fragmented yard ecosystems across single-family neighborhoods in Los Angeles [University of California]. https://escholarship.org/uc/item/83n8m5f7

  3. Doytsher, Y., Kelly, P., Khouri, R., Mclaren, R., Mueller, H., & Potsiou, C. (2010). Rapid Urbanization and Mega Cities: The Need for Spatial Information Management. FIG Congress, April, 11–16. https://www.fig.net/resources/monthly_articles/2010/march_2010/march_2010_potsiou_etal.pdf

  4. Buchholz, K. (2020). How has the world’s urban population changed from 1950 to today? Retrieved 11 15, 2021, from World Economic Forum: https://www.weforum.org/agenda/2020/11/global-continent-urban-population-urbanisation-percent/

  5. Public Health Notes. (2021). Urban and rural population of the world, 1950–2050. Retrieved 11 15, 2021, from Public Health Notes: https://www.publichealthnotes.com/howdy-urbanization-everything-we-must-know/urban-and-rural-population-of-the-world-1950-2050/

  6. EEA. (2017). Data and Maps: Maps and Graphs: Urban and rural population in developed and less developed regions. Retrieved 11 15, 2021, from European Environment Agency: https://www.eea.europa.eu/data-and-maps/figures/urban-and-rural-population-in

  7. United Nations Department of Economic and Social Affairs, Population Division. (2018). United Nations Department of Economic and Social Affairs, Population Division. Retrieved 11 15, 2021, from World Urbanization Prospects: The 2018 Revision: https://population.un.org/wup/DataQuery/

  8. Yin, S. (2017). Assessing City Resilience: Using the UNISDR Local Government Self-Assessment Tool in Koh Kong, Cambodia. This Research Is Granted by the Urban Climate Change Resilience in Southeast Asia (UCRSEA) Project, Which Is Funded by the Social Sciences and Humanities Research Council of Canada and the International Development Research Centre (IDRC), June. https://www.tei.or.th/thaicityclimate/public/research-12.pdf

  9. Rana, M. M. P. (2011). Urbanization and sustainability: Challenges and strategies for sustainable urban development in Bangladesh. Environment, Development and Sustainability, 13(1), 237–256. https://doi.org/10.1007/s10668-010-9258-4

  10. Haque, S. J., Onodera, S., & Shimizu, Y. (2013). An overview of the effects of urbanization on the quantity and quality of groundwater in South Asian megacities. Limnology, 14(2), 135–145. https://doi.org/10.1007/s10201-012-0392-6

  11. Dale, S. (2015). Innovative Scorecard for Evaluating Resiliency in our Cities. Planet@Risk, 3(1), 154–157. Davos: Global Risk Forum GRF Davos. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.839.1491&rep=rep1&type=pdf

  12. Sim, T., Wang, D., & Han, Z. (2018). Assessing the disaster resilience of megacities: The case of Hong Kong. Sustainability (Switzerland), 10(4), 1–16. https://doi.org/10.3390/su10041137

  13. Panda, Abhilash and Amaratunga, & Dilanthi. (2016). Making Cities resilient to disasters: “new” ten essentials. Proceedings of the 6th International Conference on Building Resilience, 109–129. http://eprints.hud.ac.uk/id/eprint/30298/%0AThe

  14. Suárez, M., Gómez-Baggethun, E., Benayas, J., & Tilbury, D. (2016). Towards an urban resilience index: A case study in 50 Spanish cities. Sustainability (Switzerland), 8(8). https://doi.org/10.3390/su8080774

  15. Kalema, R. (2000). Intergovernmental Relations in South Africa: A Comparative Analysis. In Provincial Government in South Africa, Conference held at Umtata, 16–18 August 2000 (Issue August). http://www.kas.de/db_files/dokumente/7_dokument_dok_pdf_4883_2.pdf

  16. United Nations, Department of Economic and Social Affairs, P. D. (2019). World Urbanization Prospects: The 2018 Revision. In Demographic Research (Vol. 12). https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf

  17. Demographia. (2020). Demographia World Urban Areas, 16th Annual Edition, 2020.06. In Demographia (Issue 16th Annual Edition). http://www.demographia.com/db-worldua.pdf

  18. Safarik, D., Ursini, S., & Wood, A. (2016). Megacities: Setting the Scene. CTBUH International Conference: Special 2016 Conference Themed Issue: Megacities, 4, 30–39. https://www.jstor.org/stable/90006407

  19. Makinde, O. O. (2012). Urbanization, housing and environment: Megacities of Africa . International Journal of Development and Sustainability, 1(3), 976–993. http://isdsnet.com/ijds-v1n3-26.pdf

  20. Qureshi, S. (2010). The fast growing megacity Karachi as a frontier of environmental challenges: Urbanization and contemporary urbanism issues. Journal of Geography and Regional Planning, 3(11), 306–321. http://www.academicjournals.org/jgrp/abstracts/abstracts/abstract2010/Nov/Qureshi.htm

  21. Kraas, F., Aggarwal, S., Coy, M., & Mertins, G. (2014). Megacities: Our global urban future. Megacities: Our Global Urban Future, 1–225. https://doi.org/10.1007/978-90-481-3417-5

  22. Li, D., Ma, J., Cheng, T., van Genderen, J. L., & Shao, Z. (2019). Challenges and opportunities for the development of MEGACITIES. International Journal of Digital Earth, 12(12), 1382–1395. https://doi.org/10.1080/17538947.2018.1512662

  23. Kourtit, K., & Nijkamp, P. (2013). In praise of megacities in a global world. Regional Science Policy & Practice, 5(2), 167–182. https://doi.org/10.1111/rsp3.12002

  24. Marsal, L., Llorente, T., Braga, G., Curtis, S., García-Brustenga, J., Garcia, J., Wakhlu, V., Sisto, R., Marti, E., Kontinakis, N., & Walsh, S. (2017). Implementing Sustainable Development Goal 11 by connecting sustainability policies and urban-planning practices through ICTs. 30. https://creativecommons.org/licenses/by-nc/3.0/igo

  25. Agyemang, W., Adanu, E., Akansiseh, S., & Kolawole Ojo, T. (2019). Towards Building Resilient Cities: Opportunities, Challenges and Innovation. In H. L. C. Ishmael Mensah (Ed.), Proceedings of the China-Africa Urban Development Forum 2019 (p. 175). https://www.researchgate.net/publication/343065653_FINALCAUDF_2020_July_2020

  26. Kirchherr, J., Reike, D., & Hekkert, M. (2017). Conceptualizing the circular economy: An analysis of 114 definitions. Resources, Conservation and Recycling, 127(December), 221–232. https://doi.org/10.1016/j.resconrec.2017.09.005

  27. Potting, J., Hekkert, M., Worrell, E., & Hanemaaijer, A. (2017). Circular economy: Measuring innovation in the product chain. In PBL Netherlands Environmental Assessment Agency (PBL Publication Number: 2544). https://www.pbl.nl/sites/default/files/downloads/pbl-2016-circular-economy-measuring-innovation-in-product-chains-2544.pdf

  28. Bozovic, R. (EnPlus consultancy), Maksimovic, C. (Imperial C. L.), Mijik, A. (Imperial C. L.), Smith, K. M. (London S. U.), Suter, I. (Imperial C. L.), & van Reeuwijk, M. (Imperial C. L.) (2017). Blue Green Solutions: A systems approach to sustainable, resilient and cost effective urban development. https://doi.org/10.13140/RG.2.2.30628.07046

  29. Dias, N., Curwell, S., & Bichard, E. (2014). The Current Approach of Urban Design, its Implications for Sustainable Urban Development. Procedia Economics and Finance, 18(September), 497–504. https://doi.org/10.1016/s2212-5671(14)00968-x

  30. Carmona, M. (2009). Sustainable urban design: Principles to practice. International Journal of Sustainable Development, 12(1), 48–77. https://doi.org/10.1504/IJSD.2009.027528

  31. Wang, H., Mei, C., Liu, J. H., & Shao, W. W. (2018). A new strategy for integrated urban water management in China: Sponge city. Science China Technological Sciences, 61(3), 317–329. https://doi.org/10.1007/s11431-017-9170-5

  32. Shao, W., Zhang, H., Liu, J., Yang, G., Chen, X., Yang, Z., & Huang, H. (2016). Data Integration and its Application in the Sponge City Construction of CHINA. Procedia Engineering, 154, 779–786. https://doi.org/10.1016/j.proeng.2016.07.583

  33. Liberalesso, T., Oliveira Cruz, C., Matos Silva, C., & Manso, M. (2020). Green infrastructure and public policies: An international review of green roofs and green walls incentives. Land Use Policy, 96(April), 104693. https://doi.org/10.1016/j.landusepol.2020.104693

  34. Ma, Y., Jiang, Y., & Swallow, S. (2020). China’s sponge city development for urban water resilience and sustainability: A policy discussion. Science of the Total Environment, 729, 139078. https://doi.org/10.1016/j.scitotenv.2020.139078

  35. Shafique, M., & Kim, R. (2018). Recent progress in low-impact development in South Korea: Water-management policies, challenges and opportunities. Water (Switzerland), 10(4). https://doi.org/10.3390/w10040435

  36. Tredway, J. C., & Havlick, D. G. (2017). Assessing the Potential of Low-Impact Development Techniques on Runoff and Streamflow in the Templeton Gap Watershed, Colorado. Professional Geographer, 69(3), 372–382. https://doi.org/10.1080/00330124.2016.1252272

  37. Ahammed, F. (2017). A review of water-sensitive urban design technologies and practices for sustainable stormwater management. Sustainable Water Resources Management, 3(3), 269–282. https://doi.org/10.1007/s40899-017-0093-8

  38. Ashley, R., Lundy, L., Ward, S., Shaffer, P., Walker, L., Morgan, C., Saul, A., Wong, T., & Moore, S. (2013). Water-sensitive urban design: Opportunities for the UK. Proceedings of the Institution of Civil Engineers: Municipal Engineer, 166(2), 65–76. https://doi.org/10.1680/muen.12.00046

  39. Barton, A. B., & Argue, J. R. (2007). A review of the application of water sensitive urban design (WSUD) to residential development in Australia. Australasian Journal of Water Resources, 11(1), 31–40. https://doi.org/10.1080/13241583.2007.11465309

  40. Broadbent, A. M., Coutts, A. M., Tapper, N. J., Demuzere, M., & Beringer, J. (2018). The microscale cooling effects of water sensitive urban design and irrigation in a suburban environment. Theoretical and Applied Climatology, 134(1–2). https://doi.org/10.1007/s00704-017-2241-3

  41. Aina, Y. A., Wafer, A., Ahmed, F., & Alshuwaikhat, H. M. (2019). Top-down sustainable urban development? Urban governance transformation in Saudi Arabia. Cities, 90(May 2018), 272–281. https://doi.org/10.1016/j.cities.2019.03.003

  42. Bentivegna, V., Curwell, S., Deakin, M., Lombardi, P., Mitchell, G., & Nijkamp, P. (2002). A vision and methodology for integrated sustainable urban development: BEQUEST. Building Research and Information, 30(2), 83–94. https://doi.org/10.1080/096132102753436468

  43. Meijer, M., Adriaens, F., van der Linden, O., & Schik, W. (2011). A next step for sustainable urban design in the Netherlands. Cities, 28(6), 536–544. https://doi.org/10.1016/j.cities.2011.07.001

  44. Adil, A. M., & Ko, Y. (2016). Socio-technical evolution of Decentralized Energy Systems: A critical review and implications for urban planning and policy. Renewable and Sustainable Energy Reviews, 57, 1025–1037. https://doi.org/10.1016/j.rser.2015.12.079

  45. Schuetze, T., & Chelleri, L. (2013). Integrating decentralized rainwater management in urban planning and design: Flood resilient and sustainable water management using the example of coastal cities in The Netherlands and Taiwan. Water (Switzerland), 5(2), 593–616. https://doi.org/10.3390/w5020593

  46. Zhang, D., Gersberg, R. M., Ng, W. J., & Tan, S. K. (2015). Conventional and decentralized urban stormwater management: A comparison through case studies of Singapore and Berlin, Germany. Urban Water Journal, 14(2), 113–124. https://doi.org/10.1080/1573062X.2015.1076488

  47. Zhang, J., & Xiong, B. Y. (2006). Towards a healthy water cycle in China. Water Science and Technology, 53(9), 9–15. https://doi.org/10.2166/wst.2006.274

  48. Sun, Y., Deng, L., Pan, S.-Y., Chiang, P.-C., Sable, S. S., & Shah, K. J. (2020). Integration of green and gray infrastructures for sponge city: Water and energy nexus. Water-Energy Nexus, 3, 29–40. https://doi.org/10.1016/j.wen.2020.03.003

  49. Xia, J., Zhang, Y. Y., Xiong, L. H., He, S., Wang, L. F., & Yu, Z. B. (2017). Opportunities and challenges of the Sponge City construction related to urban water issues in China. Science China Earth Sciences, 60(4), 652–658. https://doi.org/10.1007/s11430-016-0111-8

  50. Zuniga-Teran, A. A., Staddon, C., de Vito, L., Gerlak, A. K., Ward, S., Schoeman, Y., Hart, A., & Booth, G. (2020). Challenges of mainstreaming green infrastructure in built environment professions. Journal of Environmental Planning and Management, 63(4), 710–732. https://doi.org/10.1080/09640568.2019.1605890

  51. Nguyen, T. T., Ngo, H. H., Guo, W., & Wang, X. C. (2020). A new model framework for sponge city implementation: Emerging challenges and future developments. Journal of Environmental Management, 253(October 2019), 109689. https://doi.org/10.1016/j.jenvman.2019.109689

  52. Zhang, L., Sun, X., & Xue, H. (2019). Identifying critical risks in Sponge City PPP projects using DEMATEL method: A case study of China. Journal of Cleaner Production, 226, 949–958. https://doi.org/10.1016/j.jclepro.2019.04.067

  53. Zhang, K., Fong, T., & Chui, M. (2019). Review papers A review on implementing infiltration-based green infrastructure in shallow groundwater environments: Challenges, approaches, and progress. Journal of Hydrology, 579(August), 124089. https://doi.org/10.1016/j.jhydrol.2019.124089

  54. Wang, Y., Sun, M., & Song, B. (2017). Public perceptions of and willingness to pay for sponge city initiatives in China. Resources, Conservation and Recycling, 122, 11–20. https://doi.org/10.1016/j.resconrec.2017.02.002

  55. Nguyen, T. T., Ngo, H. H., Guo, W., Wang, X. C., Ren, N., Li, G., Ding, J., & Liang, H. (2019). Implementation of a specific urban water management - Sponge City. Science of the Total Environment, 652, 147–162. https://doi.org/10.1016/j.scitotenv.2018.10.168

  56. Wang, Yang, Liu, X., Huang, M., Zuo, J., & Rameezdeen, R. (2020). Received vs. given: Willingness to pay for sponge city program from a perceived value perspective. Journal of Cleaner Production, 256, 120479. https://doi.org/10.1016/j.jclepro.2020.120479

  57. Jia, H., Wang, Z., Zhen, X., Clar, M., & Yu, S. L. (2017). China’s sponge city construction: A discussion on technical approaches. Frontiers of Environmental Science and Engineering, 11(4), 1–11. https://doi.org/10.1007/s11783-017-0984-9

  58. Sakieh, Y., Salmanmahiny, A., Jafarnezhad, J., Mehri, A., Kamyab, H., & Galdavi, S. (2015). Evaluating the strategy of decentralized urban land-use planning in a developing region. Land Use Policy, 48, 534–551. https://doi.org/10.1016/j.landusepol.2015.07.004

  59. Zhang, D., Gersberg, R. M., Wilhelm, C., & Voigt, M. (2009). Decentralized water management: Rainwater harvesting and greywater reuse in an urban area of Beijing, China. Urban Water Journal, 6(5), 375–385. https://doi.org/10.1080/15730620902934827

  60. Van Afferden, M., Cardona, J. A., Müller, R. A., Lee, M. Y., & Subah, A. (2015). A new approach to implementing decentralized wastewater treatment concepts. Water Science and Technology, 72(11), 1923–1930. https://doi.org/10.2166/wst.2015.393

  61. Suriyachan, C., Nitivattananon, V., & Amin, N. T. M. N. (2012). Potential of decentralized wastewater management for urban development: Case of Bangkok. Habitat International, 36(1), 85–92. https://doi.org/10.1016/j.habitatint.2011.06.001

  62. Leigh, N. G., & Lee, H. (2019). Sustainable and resilient urban water systems: The role of decentralization and planning. Sustainability (Switzerland), 11(3). https://doi.org/10.3390/su11030918

  63. Schmidt, M. (2000). Energy and water , a decentralized approach to an integrated sustainable urban development. 1–6.

    Google Scholar 

  64. Capodaglio, A. G. (2017). Integrated, decentralized wastewater management for resource recovery in rural and peri-urban areas. Resources, 6(2). https://doi.org/10.3390/resources6020022

  65. Wong, T. H. F., Rogers, B. C., & Brown, R. R. (2020). Transforming Cities through Water-Sensitive Principles and Practices. One Earth, 3(4), 436–447. https://doi.org/10.1016/j.oneear.2020.09.012

  66. Wong, T. H. F. (2006). Water sensitive urban design - the journey thus far. Australasian Journal of Water Resources, 10(3), 213–222. https://doi.org/10.1080/13241583.2006.11465296

  67. Salinas Rodriguez, C. N. A., Ashley, R., Gersonius, B., Rijke, J., Pathirana, A., & Zevenbergen, C. (2014). Incorporation and application of resilience in the context of water-sensitive urban design: linking European and Australian perspectives. Wiley Interdisciplinary Reviews: Water, 1(2), 173–186. https://doi.org/10.1002/wat2.1017

  68. Vernon, B., & Tiwari, R. (2009). Place-making through water sensitive urban design. Sustainability, 1(4), 789–814. https://doi.org/10.3390/su1040789

  69. Leonard, R., Walton, A., Koth, B., Green, M., Spinks, A., Myers, B., Malkin, S., Mankad, A., Chacko, P., Sharma, A., & Pezzaniti, D. (2014). Community acceptance of water sensitive urban design: six case studies (Issue Technical Report Series No. 14/3). http://www.goyderinstitute.org/_r393/media/system/attrib/attachment/368/U.1.2WSUDTask2Report_final.pdf

  70. Hoban, A. (2018). Water sensitive urban design approaches and their description. In Approaches to Water Sensitive Urban Design: Potential, Design, Ecological Health, Urban Greening, Economics, Policies, and Community Perceptions. Elsevier Inc. https://doi.org/10.1016/B978-0-12-812843-5.00002-2

  71. Donofrio, J., Kuhn, Y., McWalter, K., & Winsor, M. (2009). Research article: Water-sensitive urban design: An emerging model in sustainable design and comprehensive water-cycle management. Environmental Practice, 11(3), 179–189. https://doi.org/10.1017/S1466046609990263

  72. Matos, C., Briga Sá, A., Bentes, I., Pereira, S., & Bento, R. (2019). An approach to the implementation of Low Impact Development measures towards an EcoCampus classification. Journal of Environmental Management, 232(October 2017), 654–659. https://doi.org/10.1016/j.jenvman.2018.11.085

  73. McPhee, Z. (2019). Optimizing Low Impact Development Controls for Sustainable Urban Flood Risk Management [University of Windsor]. Electronic Theses and Dissertations. https://scholar.uwindsor.ca/etd/7647

  74. Kim, R. (2016). 한국의 저영향개발과 그린인프라: 현황과 발전 방향 Low Impact Development and Green Infrastructure in South Korea: Trends and Future Directions. Ecology and Resilient Infrastructure, 3(2), 80–91. https://doi.org/10.17820/eri.2016.3.2.080

  75. Li, Q., Wang, F., Yu, Y., Huang, Z., Li, M., & Guan, Y. (2019). Comprehensive performance evaluation of LID practices for the sponge city construction: A case study in Guangxi, China. Journal of Environmental Management, 231(September 2018), 10–20. https://doi.org/10.1016/j.jenvman.2018.10.024

  76. Movahedinia, M., Samani, J. M. V., Barakhasi, F., Taghvaeian, S., & Stepanian, R. (2019). Simulating the effects of low impact development approaches on urban flooding: A case study from Tehran, Iran. Water Science and Technology, 80(8), 1591–1600. https://doi.org/10.2166/wst.2019.412

  77. Lu, W., & Qin, X. (2019). An Integrated Fuzzy Simulation-Optimization Model for Supporting Low Impact Development Design under Uncertainty. Water Resources Management, 33(12), 4351–4365. https://doi.org/10.1007/s11269-019-02377-7

  78. Correia Guedes, M., Pinheiro, M., & Manuel Alves, L. (2009). Sustainable architecture and urban design in Portugal: An overview. Renewable Energy, 34(9), 1999–2006. https://doi.org/10.1016/j.renene.2009.02.014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keerththana Kumareswaran .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumareswaran, K., Jayasinghe, G.Y. (2023). Urbanization and Sustainable Urban Planning. In: Green Infrastructure and Urban Climate Resilience. Springer, Cham. https://doi.org/10.1007/978-3-031-37081-6_3

Download citation

Publish with us

Policies and ethics