Skip to main content

Smart Cities Using Crowdsensing and Geoferenced Notifications

  • Conference paper
  • First Online:
Trends in Sustainable Smart Cities and Territories (SSCT 2023)


As the internet and the Internet of Things continue to expand, the idea of Smart Cities has begun to take hold. Smart Cities use connected devices and data to improve the environment and quality of life of their citizens. Technologies such as crowdsensing and geofencing allow citizens to contribute to initiatives and receive notifications when near areas of interest, respectively. This paper presents a systematic review of past works on the implementation of crowdsensing and geofencing technologies in Smart Cities, with the goal of identifying their purpose, strategies, and tools. The review examines seventeen relevant papers identified through the Scopus citation and abstract database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. 1.

  2. 2.


  1. Alves, C., Chaves, A., Rodrigues, C., Ribeiro, E., Silva, A., Durães, D., Machado, J., Novais, P.: Survey for big data platforms and resources management for smart cities. In: Bringas, P.G., García, H.P., de Pisón, F.J.M., Flecha, J.R.V., Lora, A.T., de la Cal, E.A., Herrero, Á., Martínez-Álvarez, F., Psaila, G., Quintián, H., Corchado, E. (eds.) Hybrid Artificial Intelligent Systems—17th International Conference, HAIS 2022, Salamanca, Spain, Proceedings. Lecture Notes in Computer Science, vol. 13469, pp. 393–404. Springer (2022).

  2. Amaxilatis, D., Mylonas, G., Diez, L., Theodoridis, E., Gutiérrez, V., Muñoz, L.: Managing pervasive sensing campaigns via an experimentation-as-a-service platform for smart cities. Sensors (Switzerland) 18 (2018).

  3. Ande, R., Adebisi, B., Hammoudeh, M., Saleem, J.: Internet of things: evolution and technologies from a security perspective. Sustain. Cities Soc. 54 (2020).

  4. Capponi, A., Fiandrino, C., Kantarci, B., Foschini, L., Kliazovich, D., Bouvry, P.: A survey on mobile crowdsensing systems: challenges, solutions, and opportunities. IEEE Commun. Surv. Tutor. 21, 2419–2465 (2019).

    Article  Google Scholar 

  5. Cheng, G., Guo, Y., Chen, Y., Qin, Y.: Designating city-wide collaborative geofence sites for renting and returning dock-less shared bikes. IEEE Access 7, 35596–35605 (2019).

    Article  Google Scholar 

  6. Fernandes, B., Neves, J., Analide, C.: Safecity: a platform for safer and smarter cities. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 12092 LNAI, pp. 412–416 (2020).

  7. Foschini, L., Martuscelli, G., Montanari, R., Solimando, M.: Edge-enabled mobile crowdsensing to support effective rewarding for data collection in pandemic events. J. Grid Comput. 19 (2021).

  8. Google: geofencing API.: (2022).

  9. Hu, J., Yang, K., Wang, K., Zhang, K.: A blockchain-based reward mechanism for mobile crowdsensing. IEEE Trans. Comput. Soc. Syst. 7, 178–191 (2020).

    Article  Google Scholar 

  10. Ismagilova, E., Hughes, L., Dwivedi, Y.K., Raman, K.R.: Smart cities: advances in research - an information systems perspective. Int. J. Inf. Manag. 47, 88–100 (2019)

    Google Scholar 

  11. Kirimtat, A., Krejcar, O., Kertesz, A., Tasgetiren, M.F.: Future trends and current state of smart city concepts: a survey. IEEE Access 8, 86448–86467 (2020).

    Article  Google Scholar 

  12. Kousiouris, G., Akbar, A., Sancho, J., Ta-shma, P., Psychas, A., Kyriazis, D., Varvarigou, T.: An integrated information lifecycle management framework for exploiting social network data to identify dynamic large crowd concentration events in smart cities applications. Fut. Gener. Comput. Syst. 78, 516–530 (2018).

    Article  Google Scholar 

  13. Miranda, R., Ramos, V., Ribeiro, E., Rodrigues, C., Silva, A., Durães, D., Analide, C., Abelha, A., Machado, J.: Crowdsensing on smart cities: a systematic review. In: Advances in Artificial Intelligence—IBERAMIA 2022: 17th Ibero-American Conference on AI, Cartagena de Indias, Colombia, Proceedings, pp. 103–106. Springer (2023)

    Google Scholar 

  14. Nižetić, S., Šolić, P., de-Ipiña González-de Artaza, D.L., Patrono, L.: Internet of things (IoT): opportunities, issues and challenges towards a smart and sustainable future. J. Clean. Prod. 274 (2020).

  15. Page, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E., Chou, R., Glanville, J., Grimshaw, J.M., Hróbjartsson, A., Lalu, M.M., Li, T., Loder, E.W., Mayo-Wilson, E., McDonald, S., McGuinness, L.A., Stewart, L.A., Thomas, J., Tricco, A.C., Welch, V.A., Whiting, P., Moher, D.: The prisma 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372 (2021).

  16. Pereira, P., Linhares Silva, A., Machado, R., Silva, J., Durães, D., Machado, J., Novais, P., Monteiro, J., Melo-Pinto, P., Fernandes, D.: Comparison of different deployment approaches of FPGA-based hardware accelerator for 3d object detection models. In: Progress in Artificial Intelligence: 21st EPIA Conference on Artificial Intelligence, EPIA 2022, Lisbon, Portugal, Proceedings, pp. 285–296. Springer (2022)

    Google Scholar 

  17. Picaut, J., Fortin, N., Bocher, E., Petit, G., Aumond, P., Guillaume, G.: An open-science crowdsourcing approach for producing community noise maps using smartphones. Build. Environ. 148, 20–33 (2019).

    Article  Google Scholar 

  18. Pilloni, V.: How data will transform industrial processes: crowdsensing, crowdsourcing and big data as pillars of industry 4.0. Fut. Internet 10 (2018).

  19. Pánek, J.: Emotional maps: participatory crowdsourcing of citizens’ perceptions of their urban environment. Cartogr. Perspect. 2018, 17–29 (2019).

  20. Roman, C., Liao, R., Ball, P., Ou, S., Heaver, M.D.: Detecting on-street parking spaces in smart cities: performance evaluation of fixed and mobile sensing systems. IEEE Trans. Intell. Transp. Syst. 19, 2234–2245 (2018).

    Article  Google Scholar 

  21. Shahrour, I., Xie, X.: Role of internet of things (IoT) and crowdsourcing in smart city projects. Smart Cities 4, 1276–1292 (2021).

    Article  Google Scholar 

  22. Silva, G.O., Rocha, A.M.A., Witeck, G.R., Silva, A., Durães, D., Machado, J.: On tuning the particle swarm optimization for solving the traffic light problem. In: Computational Science and its Applications—ICCSA 2022 Workshops: Malaga, Proceedings, Part II, pp. 68–80. Springer, Spain (2022)

    Google Scholar 

  23. Sousa, R., Lopes, D., Silva, A., Durães, D., Peixoto, H., Machado, J., Novais, P.: Sustainable and social energy on smart cities: systematic review. In: Guarda, T., Portela, F., Augusto, M.F. (eds.) Advanced Research in Technologies, Information, Innovation and Sustainability—Second International Conference, ARTIIS 2022, Santiago de Compostela, Spain, Revised Selected Papers, Part II. Communications in Computer and Information Science, vol. 1676, pp. 72–84. Springer (2022).,

  24. Wang, J., Wang, F., Wang, Y., Zhang, D., Wang, L., Qiu, Z.: Social-network-assisted worker recruitment in mobile crowd sensing. IEEE Trans. Mob. Comput. 18(7), 1661–1673 (2019).

    Article  Google Scholar 

  25. Yang, M., Zhu, T., Liang, K., Zhou, W., Deng, R.H.: A blockchain-based location privacy-preserving crowdsensing system. Fut. Gener. Comput. Syst. 94, 408–418 (2019).

    Article  Google Scholar 

Download references


This work has been supported by FCT-Fundação para a Ciência e Tecnologia within the R &D Units Project Scope: UIDB/00319/2020 and the project “Integrated and Innovative Solutions for the well-being of people in complex urban centers” within the Project Scope NORTE-01-0145-FEDER-000086. We would like to thank also the Guimarães city hall for making available multiple datasets.

Author information

Authors and Affiliations


Corresponding author

Correspondence to José Machado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miranda, R. et al. (2023). Smart Cities Using Crowdsensing and Geoferenced Notifications. In: Castillo Ossa, L.F., Isaza, G., Cardona, Ó., Castrillón, O.D., Corchado Rodriguez, J.M., De la Prieta Pintado, F. (eds) Trends in Sustainable Smart Cities and Territories . SSCT 2023. Lecture Notes in Networks and Systems, vol 732. Springer, Cham.

Download citation

Publish with us

Policies and ethics