Skip to main content

Towards Trust of Explainable AI in Thyroid Nodule Diagnosis

  • Chapter
  • First Online:
Artificial Intelligence for Personalized Medicine (W3PHAI 2023)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1106))

Included in the following conference series:

Abstract

The ability to explain the prediction of deep learning models to end-users is an important feature to leverage the power of artificial intelligence (AI) for the medical decision-making process, which is usually considered non-transparent and challenging to comprehend. In this paper, we apply state-of-the-art eXplainable artificial intelligence (XAI) methods to explain the prediction of the black-box AI models in the thyroid nodule diagnosis application. We propose new statistic-based XAI methods, namely Kernel Density Estimation and Density map, to explain the case of no nodule detected. XAI methods’ performances are considered under a qualitative and quantitative comparison as feedback to improve the data quality and the model performance. Finally, we survey to assess doctors’ and patients’ trust in XAI explanations of the model’s decisions on thyroid nodule images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/hungntt/xai_thyroid.

References

  1. R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Süsstrunk, Slic superpixels. Technical report (2010)

    Google Scholar 

  2. Md M. Ahsan, K.D. Gupta, M.M. Islam, S. Sen, Md Rahman, M.S. Hossain et al., Study of different deep learning approach with explainable ai for screening patients with covid-19 symptoms: using ct scan and chest x-ray image dataset (2020). arXiv:2007.12525

  3. S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, W. Samek, On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one 10(7), e0130140 (2015)

    Article  Google Scholar 

  4. A. Chattopadhay, A. Sarkar, P. Howlader, V.N. Balasubramanian, Grad-cam++: generalized gradient-based visual explanations for deep convolutional networks, in 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) (IEEE, 2018), pp. 839–847

    Google Scholar 

  5. Y.J. Deng, H.T. Li, M. Wang, N. Li, T. Tian, W. Ying, X. Peng, S. Yang, Z. Zhai, L.H. Zhou et al., Global burden of thyroid cancer from 1990 to 2017. JAMA Netw. Open 3(6), e208759–e208759 (2020)

    Article  Google Scholar 

  6. R. Fu, Q. Hu, X. Dong, Y. Guo, Y. Gao, B. Li, Axiom-based grad-cam: towards accurate visualization and explanation of cnns (2020). arXiv:2008.02312

  7. E. Giannoula, I. Iakovou, L. Giovanella, A. Vrachimis, Updated clinical management guidance during the covid-19 pandemic: thyroid nodules and cancer. Eur. J. Endocrinol. 186(4), G1–G7 (2022)

    Article  Google Scholar 

  8. R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, D. Pedreschi, A survey of methods for explaining black box models. ACM Comput. Surv. (CSUR) 51(5), 1–42 (2018)

    Article  Google Scholar 

  9. M. Güven, H. Gültekin, The prognostic impact of thyroid disorders on the clinical severity of covid-19: Results of single-centre pandemic hospital. Int. J. Clin. Pract. 75(6), e14129 (2021)

    Article  Google Scholar 

  10. K. Hauser, A. Kurz, S. Haggenmüller, R.C. Maron, C. von Kalle, J.S. Utikal, F. Meier, S. Hobelsberger, F.F. Gellrich, M. Sergon et al., Explainable artificial intelligence in skin cancer recognition: a systematic review. Eur. J. Cancer 167, 54–69 (2022)

    Google Scholar 

  11. C.R. Hebert, L.Z. Sha, R.W. Remington, Y.V. Jiang, Redundancy gain in visual search of simulated x-ray images. Atten. Percept. Psychophys. 82(4), 1669–1681 (2020)

    Google Scholar 

  12. J. Kim, J.E. Gosnell, S.A. Roman, Geographic influences in the global rise of thyroid cancer. Nat. Rev. Endocrinol. 16(1), 17–29 (2020)

    Google Scholar 

  13. C. Li, T. Yang, S. Zhu, C. Chen, S. Guan, Density map guided object detection in aerial images, in proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2020), pp. 190–191

    Google Scholar 

  14. T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid networks for object detection, in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 936–944

    Google Scholar 

  15. G. Montavon, J. Kauffmann, W. Samek, K.-R. Müller, Explaining the predictions of unsupervised learning models, in International Workshop on Extending Explainable AI Beyond Deep Models and Classifiers (Springer, 2022), pp. 117–138

    Google Scholar 

  16. N. Otsu, A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  17. E. Parzen, On estimation of a probability density function and mode. Ann. Math. Stat. 33(3), 1065–1076 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  18. V. Petsiuk, A. Das, K. Saenko, Rise: randomized input sampling for explanation of black-box models (2018). arXiv:1806.07421

  19. V. Petsiuk, R. Jain, V. Manjunatha, V.I. Morariu, A. Mehra, V. Ordonez, K. Saenko, Black-box explanation of object detectors via saliency maps, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021), pp. 11443–11452

    Google Scholar 

  20. T.-C. Pham, A. Doucet, V.-D. Hoang, Q.-H. Nguyen, T.-B. Phan, C.-T. Tran, T.-T. Bui, C.-M. Luong, V.-G. Bui, Evaluating the deep convolutional neural network for thyroid nodule detection on vietnamese ultrasound dataset, in Advances in Intelligent Information Hiding and Multimedia Signal Processing (Springer, 2021), pp. 358–366

    Google Scholar 

  21. S. Ren, K. He, R. Girshick, J. Sun, Faster r-cnn: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  22. M.T. Ribeiro, S. Singh, C. Guestrin, Why should i trust you? Explaining the predictions of any classifier, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  23. S. Sattarzadeh, M. Sudhakar, A. Lem, S. Mehryar, K.N. Plataniotis, J. Jang, H. Kim, Y. Jeong, S. Lee, K. Bae, Explaining convolutional neural networks through attribution-based input sampling and block-wise feature aggregation, in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35 (2021), pp. 11639–11647

    Google Scholar 

  24. K. Schulz, L. Sixt, F. Tombari, T. Landgraf, Restricting the flow: information bottlenecks for attribution, in International Conference on Learning Representations (2019)

    Google Scholar 

  25. R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-cam: visual explanations from deep networks via gradient-based localization, in Proceedings of the IEEE International Conference on Computer Vision (2017), pp. 618–626

    Google Scholar 

  26. K. Simonyan, A. Vedaldi, A. Zisserman, Deep inside convolutional networks: visualising image classification models and saliency maps (2013). arXiv:1312.6034

  27. D. Smilkov, N. Thorat, B. Kim, F. Viégas, M. Wattenberg, Smoothgrad: removing noise by adding noise (2017). arXiv:1706.03825

  28. M. Sudhakar, S. Sattarzadeh, K.N. Plataniotis, J. Jang, Y. Jeong, H. Kim, Ada-sise: adaptive semantic input sampling for efficient explanation of convolutional neural networks, in ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, 2021), pp. 1715–1719

    Google Scholar 

  29. G.R. Terrell, D.W. Scott, Variable kernel density estimation. Ann. Stat. 1236–1265 (1992)

    Google Scholar 

  30. J. Thomas, T. Haertling, Aibx, artificial intelligence model to risk stratify thyroid nodules. Thyroid 30(6), 878–884 (2020)

    Article  Google Scholar 

  31. H. Wang, Z. Wang, M. Du, F. Yang, Z. Zhang, S. Ding, P. Mardziel, X. Hu, Score-cam: score-weighted visual explanations for convolutional neural networks, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2020), pp. 24–25

    Google Scholar 

  32. S. Węglarczyk, Kernel density estimation and its application, in ITM Web of Conferences, vol. 23 (EDP Sciences, 2018), p. 00037

    Google Scholar 

  33. M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks, in European Conference on Computer Vision (Springer, 2014), pp. 818–833

    Google Scholar 

  34. B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, Learning deep features for discriminative localization, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 2921–2929

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Truong Thanh Hung Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nguyen, T.T.H., Truong, V.B., Nguyen, V.T.K., Cao, Q.H., Nguyen, Q.K. (2023). Towards Trust of Explainable AI in Thyroid Nodule Diagnosis. In: Shaban-Nejad, A., Michalowski, M., Bianco, S. (eds) Artificial Intelligence for Personalized Medicine. W3PHAI 2023. Studies in Computational Intelligence, vol 1106. Springer, Cham. https://doi.org/10.1007/978-3-031-36938-4_2

Download citation

Publish with us

Policies and ethics