Skip to main content

Towards Construction 4.0: Computational Circular Design and Additive Manufacturing for Architecture Through Robotic Fabrication with Sustainable Materials and Open-Source Tools

  • Chapter
  • First Online:
Architecture and Design for Industry 4.0

Abstract

There is a constant increase in demand for new construction worldwide, which is one of the main contributors of worldwide CO2 emissions. Over the last decades, such increase led to scarcity of raw materials. Although design methods have been developed to increase material efficiency, this has not yet led to a widespread reduction in material consumption. This is due to a variety of factors, mainly related to the inability of conventional fabrication methods to produce the complex shapes that result from such computational methods. Industrial robots, while offering the potential to produce such optimised shapes, often rely on inflexible interfaces and highly complex industry standards and hardware components. In response to this dual sustainability and technology challenge, this article describes a series of research projects for the design and manufacture of architectural components using renewable materials and robotics. These projects are based on novel additive robotic building processes specifically designed for renewable and bio-based building materials, ranging in scale from solid wood elements to continuous wood fibres. We propose methods to optimise the distribution of such materials at their respective scales, as well as manufacturing methods for their production. In this context, the use of novel and automatable joining methods based on form-fit joints, biological welding and bio-based binders paves the way for a sustainable and circular architectural approach. Our research aims to develop intuitive open-source software and hardware approaches for computational design and robotic fabrication, in order to expand the scope of such technologies to a wider audience of designers, construction companies and other stakeholders in architectural design and fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Statistisches Bundesamt: New orders in main construction industry (2020). https://www.destatis.de/EN/Themes/Economic-Sectors-Enterprises/Construction/_Graphic/_Interactive/new-orders-main-construction.html. Last Accessed 08 Dec 2020

  2. WorldGBC: New report: the building and construction sector can reach net zero carbon emissions by 2050 (2019). https://www.worldgbc.org/news-media/WorldGBC-embodied-carbon-report-published. Last Accessed 08 Dec 2020

  3. Shortage of building materials (2022). https://www.ifo.de/en/node/68972. Last Accessed 04 May 2022

  4. Building statistics for different construction techniques in Germany (2020). https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Bauen/Publikationen/Downloads-Bautaetigkeit/baugenehmigungen-baustoff-pdf-5311107.pdf?__blob=publicationFile. Last Accessed 03 May 2022

  5. Caulfield, J.: A new report predicts significant demand growth for mass timber components. Build. Des. Constr. (2020). https://www.bdcnetwork.com/new-report-predicts-significant-demand-growth-mass-timber-components. Last Accessed 08 Dec 2020

  6. Churkina, G., Organschi, A., Reyer, C.P.O., et al.: Buildings as a global carbon sink. Nat. Sustain. 3, 269–276 (2020). https://doi.org/10.1038/s41893-019-0462-4

    Article  Google Scholar 

  7. Hebel, D.E., Javadian, A., Heisel, F., Schlesier, K., Griebel, D., Wielopolski, M.: Process-controlled optimization of the tensile strength of bamboo fiber composites for structural applications. Compos. B Eng. 67, 125–131 (2014). https://doi.org/10.1016/j.compositesb.2014.06.032

  8. Hong, C., Li, H., Xiong, Z., Lorenzo, R., Corbi, I., Corbi, O., ... Zhang, H.: Review of connections for engineered bamboo structures. J. Build. Eng. 30, 101324 (2020). https://doi.org/10.1016/j.jobe.2020.101324

  9. Zea Escamilla, E., Habert, G., Correal Daza, J.F., Archilla, H.F., Echeverry Fernández, J.S., Trujillo, D.: Industrial or traditional bamboo construction? Comparative life cycle assessment (LCA) of bamboo-based buildings. Sustainability 10(9), 3096 (2018). https://doi.org/10.3390/su10093096

    Article  Google Scholar 

  10. Silbermann, S., Heise, J., Kohl, D., Böhm, S., Akbar, Z., Eversmann, P., Klussmann, H.: Textile architecture for wood construction. Res. Cult. Architect. 113 (2019). https://doi.org/10.1515/9783035620238-011

  11. De Beus, N., Carus, M., Bart, M.: Carbon Footprint and Sustainability of Different Natural Fibres for Biocomposites and Insulation Material. Nova Institute (2019). https://renewable-carbon.eu/publications/product/carbon-footprint-and-sustainability-of-different-natural-fibres-for-biocomposites-and-insulation-material-%e2%88%92-full-version-update-2019/. Last Accessed 29 April 2020

  12. Mindermann, P., Gil Pérez, M., Knippers, J., Gresser, G.T.: Investigation of the fabrication suitability, structural performance, and sustainability of natural fibers in coreless filament winding. Materials 15, 3260 (2022). https://doi.org/10.3390/ma15093260

  13. Dataholz. Sustainability evaluation of timber construction products (2021). www.dataholz.eu. Last Accessed 08 Dec 2021

  14. Heisel, F., Hebel, D.E., Sobek, W.: Resource-respectful construction—the case of the Urban Mining and Recycling unit (UMAR). In: IOP Conference Series: Earth and Environmental Science, Vol. 225, No. 1, p. 012049. IOP Publishing. https://doi.org//10.1088/1755-1315/225/1/012049

  15. The Living, Hi-Fi Tower. http://thelivingnewyork.com. Last Accessed 03 April 2022

  16. Moser, F., Trautz, M., Beger, A.L., Löwer, M., Jacobs, G., Hillringhaus, F., ... Reimer, J. (2017, September). Fungal mycelium as a building material. In: Proceedings of IASS Annual Symposia, Vol. 2017, No. 1, pp. 1–7. International Association for Shell and Spatial Structures (IASS)

    Google Scholar 

  17. Fungal architectures. https://www.fungar.eu. Last Accessed 03 May 2022

  18. Adamatzky, A., Ayres, P., Belotti, G., Wösten, H.: Fungal architecture position paper. Int. J. Unconv. Comput. 14 (2019). https://doi.org/10.48550/arXiv.1912.13262

  19. Hebel, D.E., Heisel, F.: Cultivated Building Materials: Industrialized Natural Resources for Architecture and Construction, 1st edn. Birkhäuser Verlag GmbH, Berlin, Germany and Basel, Switzerland (2017). https://doi.org/10.1515/9783035608922

    Book  Google Scholar 

  20. Heisel, F., Lee, J., Schlesier, K., Rippmann, M., Saedi, N., Javadian, A., Nugroho, A.R., Van Mele, T., Block, P., Hebel, D.E.: Design, cultivation and application of load-bearing mycelium components: the MycoTree at the 2017 Seoul Biennale of architecture and urbanism. Int. J. Sustain. Energy Dev. 6(1), 296–303 (2019). https://doi.org/10.20533/ijsed.2046.3707.2017.0039

  21. Mogu. https://mogu.bio. Last Accessed 5 April 2022

  22. Industry 4.0. www.plattform-i40.de. Last Accessed 23 June 2022

  23. Begić, H., Galić, M.: A systematic review of construction 4.0 in the context of the BIM 4.0 premise. Buildings 11, 337 (2021). https://doi.org/10.3390/buildings11080337

  24. Construction 4.0. https://www.buildingtransformations.org/articles/construction-4-0. Last Accessed 23 June 2022

  25. Manzoor, B., Othman, I., Pomares, J.C.: Digital technologies in the architecture, engineering and construction (AEC) industry—A bibliometric—qualitative literature review of research activities. Int. J. Environ. Res. Public Health 18, 6135 (2021). https://doi.org/10.3390/ijerph18116135

    Article  Google Scholar 

  26. Graser, K., Baur, M., Apolinarska, A.A., Dörfler, K., Hack, N., Jipa, A., ... Hall, D.M.: DFAB HOUSE—A comprehensive demonstrator of digital fabrication in architecture. In: Fabricate 2020: Making Resilient Architecture, pp. 130–139 (2020). https://doi.org/10.2307/j.ctv13xpsvw.21

  27. Popovic, D., Fast-Berglund, A., Winroth, M.: Production of customized and standardized single family timber houses—A comparative study on levels of automation. In: 7th Swedish Production Symposium Vol. 1 (2016)

    Google Scholar 

  28. Homag Robotic Timber Framing. https://www.homag.com/en/product-detail/robots-in-timber-framing. Last Accessed 5 May 2022

  29. Robeller, C., Hahn, B., Mayencourt, P., Weinand, Y.: CNC-fabricated dovetails for joints of prefabricated CLT components. Bauingenieur 89, 487–490 (2014)

    Google Scholar 

  30. Reichenbach, S., Kromoser, B.: State of practice of automation in precast concrete production. J. Build. Eng. 43, 102527 (2021). https://doi.org/10.1016/j.jobe.2021.102527

    Article  Google Scholar 

  31. Altobelli, F., Taylor, H.F., Bernold, L.E.: Prototype robotic masonry system. J. Aerosp. Eng. 6(1), 19–33 (1993)

    Article  Google Scholar 

  32. Bock, T.: Construction automation and robotics. Robot. Autom. Constr. 21–42 (2008). https://doi.org/10.5772/5861

  33. Krechting, A.: Prefabrication in the brick industry. In: 13th International Brick and Block Masonry Conference, July. Amsterdam, pp. 4–7 (2004)

    Google Scholar 

  34. Lienhard, J., Walz, A.: Digitaler Formschluss–Zahn-Steckverbindungen für komplexe Stahlbauknoten. Stahlbau 87(7), 673–679 (2018)

    Article  Google Scholar 

  35. Kerber, E., Heimig, T., Stumm, S., Oster, L., Brell-Cokcan, S., Reisgen, U.: Towards robotic fabrication in joining of steel. In ISARC. In: Proceedings of the International Symposium on Automation and Robotics in Construction, Vol. 35, pp. 1–9. IAARC Publications (2018). https://doi.org/10.22260/ISARC2018/0062

  36. Ariza, I., Rust, R., Gramazio, F., Kohler, M.: Towards adaptive detailing with in-place WAAM connections. In: BE-AM 2020 Symposium and Exhibition, p. 34 (2020)

    Google Scholar 

  37. Aish, R.: Building modelling: the key to integrated construction CAD. In: CIB 5th International Symposium on the Use of Computers for Environmental Engineering related to Building, 7–9 July (1986)

    Google Scholar 

  38. Faux, I. D., Pratt, M.J.: Computational geometry for design and manufacture (1979)

    Google Scholar 

  39. Dynamo. https://dynamobim.org. Last Accessed 23 June 2022

  40. Rhino.Inside. https://github.com/mcneel/rhino.inside. Last Accessed 23 June 2022. Burns, M.: Automated fabrication. Improving productivity in manufacturing. Ennex, Los Angeles (1993)

  41. DIN e.V.: DIN 8580. Fertigungsverfahren - Begriffe, Einteilung (2020)

    Google Scholar 

  42. VDI 3405 Additive Fertigungsverfahren. Grundlagen, Begriffe, Verfahrensbeschreibung

    Google Scholar 

  43. Xtree concrete 3d printing. https://xtreee.com. Last Accessed 05 May 2022

  44. Buswell, R.A., De Silva, W.L., Jones, S.Z., Dirrenberger, J.: 3D printing using concrete extrusion: a roadmap for research. Cem. Concr. Res. 112, 37–49 (2018). https://doi.org/10.1016/j.cemconres.2018.05.006

    Article  Google Scholar 

  45. Peri concrete 3d printing. https://www.peri.com/en/business-segments/3d-construction-printing.html. Last Accessed 05 May 2022

  46. 3d printing house factory. https://www.3d.weber/news/worlds-first-house-3d-printing-factory-opens-in-eindhoven-netherlands. Last accessed 05 May 2022

  47. Ding, Y., Dwivedi, R., Kovacevic, R.: Process planning for 8-axis robotized laser-based direct metal deposition system: a case on building revolved part. Robot. Comput.-Integr. Manuf. 44, 67–76 (2017). https://doi.org/10.1016/j.rcim.2016.08.008

    Article  Google Scholar 

  48. Joosten, S.K.: Printing a stainless steel bridge: an exploration of structural properties of stainless steel additive manufactures for civil engineering purposes (2015)

    Google Scholar 

  49. Henke, K., Treml, S.: Wood based bulk material in 3D printing processes for applications in construction. Eur. J. Wood Wood Prod. 71(1), 139–141 (2013). https://doi.org/10.1007/s00107-012-0658-z

    Article  Google Scholar 

  50. Lamm, M.E., Wang, L., Kishore, V., Tekinalp, H., Kunc, V., Wang, J., ... Ozcan, S.: Material extrusion additive manufacturing of wood and lignocellulosic filled composites. Polymers 12(9), 2115 (2020). https://doi.org/10.3390/polym12092115

  51. Wimmer, R., Steyrer, B., Woess, J., Koddenberg, T., Mundigler, N.: 3D printing and wood. Pro Ligno 11(4), 144–149 (2015)

    Google Scholar 

  52. Markin, V., Schröfl, C., Blankenstein, P., Mechtcherine, V.: Three-Dimensional (3D)-printed wood-starch composite as support material for 3D concrete printing. ACI Mater. J. 118(6), 301–310 (2021). https://doi.org/10.14359/51733131

    Google Scholar 

  53. Forust 3D printed wood. https://www.forust.com/

  54. Stute, F., Mici, J., Chamberlain, L., Lipson, H.: Digital wood: 3D internal color texture mapping. 3D Print. Addit. Manuf. 5(4), 285–291 (2018). https://doi.org/10.1089/3dp.2018.0078

  55. Helm, V., Knauss, M., Kohlhammer, T., Gramazio, F., Kohler, M.: Additive robotic fabrication of complex timber structures. In: Advancing Wood Architecture: A Computational Approach, pp. 29–42 (2016). https://doi.org/10.4324/9781315678825-3

  56. Labonnote, N., Rønnquist, A., Manum, B., Rüther, P.: Additive construction: state-of-the-art, challenges and opportunities. Autom. Constr. 72, 347–366 (2016). https://doi.org/10.1016/j.autcon.2016.08.026

    Article  Google Scholar 

  57. ASTM Committee F42 on Additive Manufacturing Technologies, & ASTM Committee F42 on Additive Manufacturing Technologies. Subcommittee F42. 91 on Terminology. Standard terminology for additive manufacturing technologies. ATSM International (2012)

    Google Scholar 

  58. VDI Industrie 4.0. www.vdi.de/ueber-uns/presse/publikationen/details/industrie-40-begriffe-terms-and-definitions. Last Accessed 23 June 2022

  59. Eversmann, P.: Robotic fabrication techniques for material of unknown geometry. In: Humanizing Digital Reality. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-6611-5_27

  60. Gasparetto, A., Scalera, L.: A brief history of industrial robotics in the 20th century. Adv. Hist. Stud. 8, 24–35 (2019). https://doi.org/10.4236/ahs.2019.81002

    Article  Google Scholar 

  61. ABB RobotStudio. https://new.abb.com/products/robotics/de/robotstudio. Last Accessed 06 May 2022

  62. Kuka.sim. https://www.kuka.com/de-de/produkte-leistungen/robotersysteme/software/planung-projektierung-service-sicherheit/kuka_sim. Last Accessed 06 May 2022

  63. Fanuc Roboguide. https://www.fanuc.eu/de/en/robots/accessories/roboguide. Last Accessed 06 May 2022

  64. UR Sim. https://www.universal-robots.com/download/software-e-series/simulator-non-linux/offline-simulator-e-series-ur-sim-for-non-linux-594/. Last Accessed 06 May 2022

  65. Visual Components. https://www.visualcomponents.com/. Last Accessed 06 May 2022

  66. Gazebo. https://gazebosim.org/. Last accessed 06 May 2022

  67. CoppeliaSim. https://www.coppeliarobotics.com/. Last Accessed 06 May 2022

  68. HAL robotics. https://hal-robotics.com/. Last Accessed 06 May 2022

  69. RoboDK. https://robodk.com/. Last Accessed 06 May2022

  70. Robot Components. https://www.food4rhino.com/en/app/robot-components. Last Accessed 06 May 2022

  71. Compas FAB. https://github.com/compas-dev/compas_fab. Last Accessed 06 May 2022

  72. Kuka prc. https://www.food4rhino.com/en/app/kukaprc-parametric-robot-control-grasshopper. Last Accessed 06 May 2022

  73. Robots. https://www.food4rhino.com/en/app/robots. Last Accessed 06 May 2022

  74. ROS – Robot Operating System. https://www.ros.org/. Last Accessed 06 May 2022

  75. Moveit. https://moveit.ros.org. Last Accessed 06 May 2022

  76. Ueda, M., Iwata, K., Shimizu, T., Sakai, I.: Sensors and systems of an industrial robot. In: Memoirs of the Faculty of Engineering, Vol. 27. Nagoya University (1975)

    Google Scholar 

  77. Arduino. https://www.arduino.cc/. Last Accessed 14 May 2022

  78. I/O definitions. https://www.electricalclassroom.com/digital-i-o-and-analog-i-o/. Last Accessed 14 May 2022

  79. Kiencke, U., Dais, S., Litschel, M.: Automotive serial controller area network. SAE Trans. 823–828 (1986)

    Google Scholar 

  80. IO-Link. https://io-link.com. Last Accessed 14 May 2022

  81. Frotzscher, A., Wetzker, U., Bauer, M., Rentschler, M., Beyer, M., Elspass, S., Klessig, H.: Requirements and current solutions of wireless communication in industrial automation. In: 2014 IEEE International Conference on Communications Workshops (ICC) , June, pp. 67–72. IEEE (2014). https://doi.org/10.1109/ICCW.2014.6881174

  82. Stolt, A., Linderoth, M., Robertsson, A., Johansson, R.: Force controlled robotic assembly without a force sensor. In 2012 IEEE International Conference on Robotics and Automation, May, pp. 1538–1543. IEEE (2012). https://doi.org/10.1109/ICRA.2012.6224837

  83. Rossi, A., Deetman, A., Stefas, A., Göbert, A., Eppinger, C., Ochs, J., Tessmann, O., Eversmann, P.: An open approach to robotic prototyping for architectural design and construction. In: Gengnagel, C., Baverel, O., Betti, G., Popescu, M., Thomsen, M.R., Wurm, J. (eds) Towards Radical Regeneration. DMS 2022. Springer, Cham. https://doi.org/10.1007/978-3-031-13249-0_9

  84. Robeller, C.: Integral mechanical attachment for timber folded plate structures (No. 6564). EPFL (2015). https://doi.org/10.5075/epfl-thesis-6564

  85. Søndergaard, A., Amir, O., Eversmann, P., Piskorec, L., Stan, F., Gramazio, F., Kohler, M.: Topology optimization and robotic fabrication of advanced timber space-frame structures. In: Reinhardt, D., Saunders, R., Burry, J. (eds.), Robotic Fabrication in Architecture, Art and Design 2016, pp. 190–203. Springer (2016). https://doi.org/10.1007/978-3-319-26378-6_14

  86. Lienhard, J., Eversmann, P.: New hybrids—From textile logics towards tailored material behaviour. Architect. Eng. Des. Manag. 17(3–4), 169–174 (2021). https://doi.org/10.1080/17452007.2020.1744421

    Article  Google Scholar 

  87. Bendsoe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods, and Applications. Springer Science & Business Media (2003). https://doi.org/10.1007/978-3-662-05086-6

  88. Eversmann, P., Schling, E., Ihde, A., Louter, C.: Low-cost double curvature: geometrical and structural potentials of rectangular, cold-bent glass construction. In: Proceedings of IASS Annual Symposia, September, Vol. 2016, No. 16, pp. 1–10. International Association for Shell and Spatial Structures (IASS) (2016)

    Google Scholar 

  89. Raymond, E.: The cathedral and the bazaar. Knowl. Technol. Policy 12, 23–49 (1999). https://doi.org/10.1007/s12130-999-1026-0

    Article  Google Scholar 

  90. Experimentelles und Digitales Entwerfen und Konstruieren, Universität Kassel. Robot Components. https://robotcomponents.github.io/RobotComponents-Documentation/. Last Accessed 16 June 2022

  91. Stefas, A., Rossi, A., Tessmann, O.: Funken—Serial protocol toolkit for interactive prototyping. In: Computing for a better tomorrow—Proceedings of the 36th eCAADe Conference, vol. 2, pp. 177–186, Lodz, Poland (2018). https://doi.org/10.52842/conf.ecaade.2018.2.177

  92. Schwicker, M., Nikolov, N.: Development of a fused deposition modeling system to build form-fit joints using an industrial robot. Int. J. Mech. Eng. Robot. Res. 11(2) (2022). https://doi.org/10.18178/ijmerr.11.2.51-58

  93. Guan, Z., Komatsu, K., Jung, K., Kitamori, A.: Structural characteristics of beam-column connections using compressed wood dowels and plates. In: Proceedings of the World Conference on Timber Engineering (WCTE), Trentino (Italy), June (2010)

    Google Scholar 

  94. Robeller, C., Von Haaren, N.: Recycleshell: wood-only shell structures made from cross-laminated timber (CLT) production waste. J. Int. Assoc. Shell Spatial Struct. 61(2), 125–139 (2020). https://doi.org/10.20898/j.iass.2020.204.045

    Google Scholar 

  95. Tessmann, O., Rossi, A.: Geometry as interface: parametric and combinatorial topological interlocking assemblies. J. Appl. Mech. 86(11) (2019). https://doi.org/10.1115/1.4044606

  96. Hemmilä, V., Adamopoulos, S., Karlsson, O., Kumar, A.: Development of sustainable bio-adhesives for engineered wood panels–A Review. RSC Adv. 7(61), 38604–38630 (2017). https://doi.org/10.1039/C7RA06598A

    Article  Google Scholar 

  97. Industriell nutzbare, nachhaltige und wiederverwendbare Schalungen zur Realisierung von doppelseitig gekrümmten Betonfertigteilen für energieeffizientes, ressourcenschonendes und klimagerechtes Bauen. https://www.zukunftbau.de/projekte/forschungsfoerderung/1008187-1830. Last Accessed 14 June 2022

  98. Stamm, B., Natterer, J., Navi, P.: Joining wood by friction welding. Holz Roh Werkst 63, 313–320 (2005). https://doi.org/10.1007/s00107-005-0007-6

    Article  Google Scholar 

  99. Schramm, K., Eppinger, C., Rossi, A., Braun, M., Brueden, M., Seim, W., Eversmann, P.: Redefining material efficiency—Computational design, optimization and robotic fabrication methods for planar timber slabs. In: Gengnagel, C., Baverel, O., Betti, G., Popescu, M., Thomsen, M.R., Wurm, J. (eds) Towards Radical Regeneration. DMS 2022. Springer, Cham. https://doi.org/10.1007/978-3-031-13249-0_41

  100. Özdemir, E., Saeidi, N., Javadian, A., Rossi, A., Nolte, N., Ren, S., Dwan, A., Acosta, I., Hebel, D.E., Wurm, J., Eversmann, P.: Wood-Veneer-reinforced mycelium composites for sustainable building components. Biomimetics 7, 39 (2022). https://doi.org/10.3390/biomimetics7020039

    Article  Google Scholar 

  101. Göbert, A., Deetman, A., Rossi, A., et al.: 3DWoodWind: robotic winding processes for material-efficient lightweight veneer components. Constr Robot 6, 39–55 (2022). https://doi.org/10.1007/s41693-022-00067-2

    Article  Google Scholar 

  102. Silbermann, S., Böhm, S., Klussmann, H., Eversmann, P.: Textile tectonics for wood construction. In: Hudert, M., Pfeiffer, S. (eds.) Rethinking Wood: Future Dimensions of Timber Assembly. Birkhäuser. https://doi.org/10.1515/9783035617061

  103. Eversmann, P., Ochs, J., Heise, J., Akbar, J., Böhm, J.: Additive timber manufacturing: a novel, wood-based filament and its additive robotic fabrication techniques for large-scale, material-efficient construction. 3D Print. Addit. Manuf. 161–176 (2022). https://doi.org/10.1089/3dp.2020.0356

  104. Ochs, J., Akbar, Z., Eversmann, P.: Additive manufacturing with solid wood: Continuous robotic laying of multiple wicker filaments through micro lamination. In: Design Computation Input/Output (2020). https://doi.org/10.47330/dcio.2020.jzan7781

  105. Rossi, A., Javadian, A., Acosta, I., Özdemir, E., Nolte, N., Saeidi, N., Dwan, A., Ren, S., Vries, L., Hebel, D., Wurm, J., Eversmann, P.: HOME: wood-mycelium composites for CO2-Neutral, circular interior construction and fittings. In: Berlin D-A-CH Conference: Built Environment within Planetary Boundaries (SBE Berlin 2022). IOP Publishing (2022). https://doi.org/10.1088/1755-1315/1078/1/012068

Download references

Acknowledgements

Research presented in this article was funded by the following grants: Flignum (FNR, #22026418), 3DWoodWind (BBSR, 10.08.18.7-20.24 and 10.08.17.7-21.10), Robotic Timber Assembly (DFG, 436451184), RAP-Lab (DFG, #416914951), Rethinking Wood (BBSR, #10.08.18.7-21.22), Home (BBSR, 10.08.18.7-21.48).

Research was developed in collaboration with Prof. Dr.-Ing. Stefan Böhm (Flignum), Prof. Dr.-Ing. Julian Lienhard (3DWoodWind Research Prototype), Prof. Heike Klussmann (Flignum), Prof. Dr.-Ing. Werner Seim (Robotic Timber Assembly), Prof. Dr.-Ing. Jan Wurm and Prof. Dirk Hebel (Home).

Scientific development and creative contributions to the different projects were done by our chairs team members Anne Liebringshausen, Andreas Göbert, Julian Ochs, Julia Hannu, Eda Özdemir, Nadja Nolte, Kristina Schramm, Hannah Hagedorn, Guido Brinkmann and former team members Zuardin Akbar, Mohammed Dawod, Arjen Deetman, Carl Eppinger, Christoph Schlopschnat and Benedikt Wannemacher.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Eversmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eversmann, P., Rossi, A. (2024). Towards Construction 4.0: Computational Circular Design and Additive Manufacturing for Architecture Through Robotic Fabrication with Sustainable Materials and Open-Source Tools. In: Barberio, M., Colella, M., Figliola, A., Battisti, A. (eds) Architecture and Design for Industry 4.0. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-36922-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36922-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36921-6

  • Online ISBN: 978-3-031-36922-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics