Skip to main content

From Technology to Strategy: Robotic Fabrication and Human Robot Collaboration for Increasing AEC Capacities

  • Chapter
  • First Online:
Architecture and Design for Industry 4.0

Abstract

This position paper unpacks the relationship between intangible pre- and post-production and tangible production processes under an Industry 4.0 framework for architecture and design to mitigate the Architecture Engineering Construction (AEC) sectors’ contribution to climate change and investigate potentials for SDG 9 (industry, innovation and infrastructure). As Industry 4.0 is describing a business model or strategy foremost that utilises and incorporates technology via a cyber-physical system, we investigate how robotic technologies and human robot collaboration can enable methods, frameworks, and systems for the AEC sector; and what opportunities and challenges outside the tangible production floor can be considered to tie in architecture and construction. By reviewing state-of-the-art tangible production processes, robotic fabrication, and robotic interfaces, we aim to outline potential research domains in intangible pre-and post-production towards Next Gen Architectural Manufacturing. We conclude with objectives for reducing architecture’s resources appetite using computation and modern manufacturing strategies and a strategic framework to enable this in the AEC sector. This investigation, its proposed hypothesis, methodology, implications, significance, and evaluation are presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. https://doi.org/10.1007/978-3-319-26378-6_10

  2. Aaltonen, I., Sali, T., Marstio, I.: Refining levels of collaboration to support the design and evaluation of human-robot interaction in the manufacturing industry, Procedia CIRP 72 (2018), https://doi.org/10.1016/j.procir.2018.03.214, pp 93–98

  3. Adams, J. A.: Critical considerations for human-robot interface development. In Proceedings of 2002 AAAI Fall Symposium (pp. 1–8) (2002), https://www.aaai.org/Papers/Symposia/Fall/2002/FS-02-03/FS02-03-001.pdf

  4. Arcot, R.: Cyberphysical systems—the core of Industry 4.0’. Online article, access date: July 7, 2022, https://blog.isa.org/cyber-physical-systems-the-core-of-industry-4.0

  5. Bauer, A., Wollherr, D., Buss, M.: Human–robot collaboration: a survey. International J. Human. Robot. 5(01), 47–66 (2008)

    Google Scholar 

  6. Benachio, G. L., Carmo Duarte Freitas, M., Tavares, SF. (2020). Circular economy in the construction industry: A systematic literature review. J. Clean. Prod. 260, 121046 (2020). ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2020.121046

  7. Bernstein, P (2018) Architecture | Design | Data, Birkhäuser, Basel

    Google Scholar 

  8. Bock, T.: The future of construction automation: Technological disruption and the upcoming ubiquity of robotics. Autom. Constr. 59, 113–121 (2015). https://doi.org/10.1016/j.autcon.2015.07.022

    Article  Google Scholar 

  9. Braumann, J., Stumm, S., Brell-Cokcan, S. (2016). Towards New Robotic Design Tools: Using Collaborative Robots within the Creative Industry. ACADIA //2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978–0–692–77095–5] Ann Arbor 27–29 October, 2016, https://doi.org/10.52842/conf.acadia.2016.164, pp. 164–173

  10. Brell-Çokcan, S., Braumann, J. (eds.): Robotic Fabrication in Architecture, Art and Design 2012, Springer International Publishing Switzerland (2012). ISBN: 978–3–319-04662-4

    Google Scholar 

  11. Brettel, M., Friederichsen, N., Keller, M., and Rosenberg, M. (2014). How virtualization, decentralization and network building change the manufacturing landscape: An Industry 4.0 Perspective. International Journal of Mechanical, Industrial Science and Engineering, 8(1), 37–44

    Google Scholar 

  12. Bryonjolfsson, E., McAfee, A. (2014). The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies (WW Norton)

    Google Scholar 

  13. Chapman, R (2005) Inadequate Interoperability. ISARC. Ferrara (Italy)

    Google Scholar 

  14. Colgate, J.E., Wannasuphoprasit, W., Peshkin, M.A.: Cobots: Robots for Collaboration with Human Operators. Proceedings of the International Mechanical Engineering Congress and Exhibition, Atlanta, GA, DSC-Vol. 58, 433–439 (1996)

    Google Scholar 

  15. Criado-Pérez, C., Shinkle, G., Hoellerer, M., Sharma, A., Collins, C., Gardner, N., Haeussler, MH., Pan, S. (2022). Digital Transformation in the Australian AEC Industry: Prevailing Issues and Prospective Leadership Thinking, Journal of Construction Engineering and Management, Volume 148 Issue 1 - January 2022 p.1–12. DOI: https://doi.org/10.1061/(ASCE)CO.1943-7862.0002214

  16. Daas, M., Witt, AJ.: Towards a Robotic Architecture. Actar D (2018)

    Google Scholar 

  17. Deltex Clarity (2020) Architecture & Engineering Industry Report (info.deltek.com)

    Google Scholar 

  18. Deutsch, R. (2019) Superusers: Design Technology Specialists and the Future of Practice. Routledge

    Google Scholar 

  19. Devadass, P, Stumm, S., Brell-Cokcan, S (2019). Adaptive Haptically Informed Assembly with Mobile Robots in Unstructured Environments, Pages 469–476 (2019 Proceedings of the 36th ISARC, Banff, Canada, ISBN 978–952–69524–0–6, ISSN 2413–5844)

    Google Scholar 

  20. Djuric, A, Urbanic, R., Rickli, J. (2016), A Framework for Collaborative Robot (CoBot) Integration in Advanced Manufacturing Systems, SAE International Journal of Materials and Manufacturing, Vol. 9, No. 2 (May 2016), pp. 457–464

    Google Scholar 

  21. Dörfler, K., Sandy, T.M., Giftthaler, M., Gramazio, F., Kohler, M.: Mobile robotic brickwork. In: Reinhardt, D., Burry, J., Saunders, R. (eds.) (2016) Robotic Fabrication in Architecture, Art and Design 2016. Springer International Publishing, Switzerland (2016). https://doi.org/10.1007/978-3-319-26378-6_10.

  22. Feringa, J. (2014). Entrepreneurship in Architectural Robotics: The Simultaneity of Craft, Economics and Design. Special Issue: Made by Robots: Challenging Architecture at a Larger Scale, Volume84, Issue3,https://doi.org/10.1002/ad.1755, pp 60–65

  23. Flores, A., Bauer, P., Reinhart, G.: Concept of a learning knowledge-based system for programming industrial robots, Procedia CIRP, Volume 79, 2019. ISSN 626–631, 2212–8271 (2019). https://doi.org/10.1016/j.procir.2019.02.076

    Article  Google Scholar 

  24. Fologram, https://fologram.com/

  25. Fryman, J., Matthias, B. (2012). Safety of industrial robots: From conventional to collaborative applications. In ROBOTIK 2012; 7th German Conference on Robotics (pp. 1–5). VDE. https://www.researchgate.net/publication/269411126_Safety_of_Industrial_Robots_From_Conventional_to_Collaborative_Applications

  26. Gallaher, M P., Chapman, R. (2004) Cost analysis of inadequate interoperability in the US capital facilities industry. https://nvlpubs.nist.gov/nistpubs/gcr/2004/NIST.GCR.04-867.pdf

  27. Gardner, N.: New Divisions of Digital Labour in Architecture. Fem. Rev. 123, 56–75 (2019)

    Article  Google Scholar 

  28. Gharbia, M., Chang-Richards, A., Lu, Y., Zhong, R., Li, H.: Robotic technologies for on-site building construction: A systematic review, Journal of Building Engineering, Volume 32, 2020. ISSN 101584, 2352–7102 (2020). https://doi.org/10.1016/j.jobe.2020.101584

    Article  Google Scholar 

  29. Gillies, M.: Understanding the role of interactive machine learning in movement interaction design. ACM Transactions on Computer Human Interaction (TOCHI), 26(1) 1–34, (2019)

    Google Scholar 

  30. Government’s Modern Manufacturing Strategy MMS (Industry.gov.au 2022)

    Google Scholar 

  31. Gramazio, F., Willmann, J., Kohler, M.: The Robotic Touch: How Robots Change Architecture. Park Books (2015)

    Google Scholar 

  32. Hadrian X, FastBrick, https://www.fbr.com.au/view/hadrian-x, access date 07 July, 2022.

  33. Haeusler, M., Gardner, N., Zavoleas, Y.: Computational Design—From Promise to Practice, Avedition, Ludwigsburg (2019)

    Google Scholar 

  34. Halme, R.J., Lanz, M.: Review of vision-based safety systems for human-robot collaboration. Procedia CIRP 72, 2018 (2018). https://doi.org/10.1016/j.procir.2018.03.043,pp111-116

    Article  Google Scholar 

  35. Hermann, M., Pentek, T. and Otto, B. (2015). Design Principles for Industry 4.0 Scenarios, TU Dortmund, DOI: https://doi.org/10.13140/RG.2.2.29269.22248, acces date: 13/05/2022

  36. Industry Insights, Manufacturing and the smile Curve, https://publications.industry.gov.au/publications/industryinsightsjune2018/documents/IndustryInsights_2_2018_Chapter3_ONLINE.pdf

  37. Jahn, G., Newnham, C., Beanland, M. (2018). Making in Mixed Reality. Holographic design, fabrication, assembly and analysis of woven steel structures. ACADIA // 2018: Recalibration. On imprecision and infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978–0–692–17729–7] Mexico City, Mexico 18–20 October, 2018, pp. 88–97 https://doi.org/10.52842/conf.acadia.2018.088

  38. Jahn, G., Newnham, C., van den Berg, N. (2022). Augmented Reality for Construction From Steam-Bent Timber. Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9–15 April 2022, pp. 191–200 http://papers.cumincad.org/cgi-bin/works/Show?caadria2022_296

  39. KUKA|prc, https://www.robotsinarchitecture.org/kuka-prc

  40. Kolbeinsson, A., Lagerstedt., E, Lindblom, J. (2019). Foundation for a classification of collaboration levels for human-robot cooperation in manufacturing, Production & Manufacturing Research, 7:1, 448–471, DOI: https://doi.org/10.1080/21693277.2019.1645628

  41. Kyjanek, O., Al Bahar, B., Vasey, L., Wannemacher, B., Menges, A. (2019). Implementation of an Augmented Reality AR Workflow for Human Robot Collaboration in Timber Prefabrication. Proceedings of the 36th ISARC, Banff, Canada, ISBN 978–952–69524–0–6, ISSN 2413–5844), pp 1223–1230

    Google Scholar 

  42. Lasi, H., Fettke, P., Feld, T., Hoffmann, M. (2014). Industry 4.0. Business & Information Systems Engineering:Vol. 6: Iss. 4, 239–242. https://aisel.aisnet.org/bise/vol6/iss4/5

  43. Lee, J.H., Ostwald, M.J.: Grammatical and syntactical approaches in architecture. IGI Global (2020)

    Google Scholar 

  44. Lipsey, R.G., Carlaw, K.I., Bekar, C.T.: Economic Transformations: General Purpose Technologies and Long-Term Economic Growth. Oxford University Press, Oxford (2005)

    Google Scholar 

  45. Liu, H., Wang, L.: Human motion prediction for human-robot collaboration. J. Manuf. Syst. 44(2017), 287–294 (2017). https://doi.org/10.1016/j.jmsy.2017.04.009

    Article  Google Scholar 

  46. Lonergan, D. (2019), Breaking the mould: How Industry 4.0 is modernising the way manufacturers do business. online article, Manufacturer’s Monthly, access date: July 7, 2022, https://www.manmonthly.com.au/features/breaking-mould-industry-4-0-modernising-way-manufacturers-business/

  47. Lublasser, E., Hildebrand, L., Vollpracht, A., Brell-Cokcan, S.: Robot assisted deconstruction of multi-layered façade constructions on the example of external thermal insulation composite systems. Construction Robotics 1(1), 39–47 (2017)

    Article  Google Scholar 

  48. MX3D, Laarman: 3D printed Steel Bridge, https://mx3d.com/services/metalxl/, access date 07 July, 2022.

  49. Malik, A., Bilberg, A.: Developing A Reference Model For Human-Robot Interaction. International Journal On Interactive Design And Manufacturing (Ijidem) 13(4), 1541–1547 (2019)

    Article  Google Scholar 

  50. Marks, A., Muse, A., Pothier, D., Sahwney, A. (2020). Future of work in construction, Autodesk white paper, https://www.rics.org/globalassets/rics-website/media/knowledge/20200522_autodesk_whitepaperconstruction_final.pdf, accessed July 7th, 2022

  51. Mavropoulos, A., Nilsen, A. (2020). Industry 4.0 and Circular Economy: Towards a Wasteless Future or a Wasteful Planet?. ISW Wiley

    Google Scholar 

  52. McGee, W., Ponce de Leon, M. (eds.): Robotic Fabrication in Architecture, Art and Design 2014. Springer International Publishing, Switzerland. ISBN: 978–3–319–04662–4

    Google Scholar 

  53. McKinsey Global Institute. Barbosa, F., Woetzel, J., Mischke, J., Ribeirinho, M., Sridhar, M., Parsons, M., Bertram, N., Brown, S.: Reinventing construction through a productivity revolution, February 27, 2017 (2017)| Report, https://www.mckinsey.com/business-functions/operations/our-insights/reinventing-construction-through-a-productivity-revolution, access date: May 13, 2022

  54. McKinsey Global Institute, Ribeirinho, M., Mischke, J., Strube, G., Sjödin, E., Blanco, JL., Palter, R., Biörck, J., Rockhill, D., Andersson, T.: The next normal in construction: How disruption is reshaping the world’s largest ecosystem. McKinsey Global Institute, June 4, 2020 | Report. https://www.mckinsey.com/business-functions/operations/our-insights/the-next-normal-in-construction-how-disruption-is-reshaping-the-worlds-largest-ecosystem, access date: May 13, 2022, access date: May 13, 2022

  55. McKinsey Global Institute, Gregolinska, E., Khanam, R., Lefort, F., Parthasarathy, P. (2022). Capturing the true value of Industry 4.0, McKinsey Global

    Google Scholar 

  56. NCCR, ETH: DFAB House: http://dfabhouse.ch/, access date 07 July, 2022.

  57. Odico, Formwork Robotics: Factory-on-the Fly, https://www.odico.dk/technologies#factoryon-the-fly, access date 07 July, 2022.

  58. Oesterreich, T.D., Teuteberg, F.: Understanding the implications of digitisation and automation in the context of Industry 4.0: A triangulation approach and elements of a research agenda for the construction industry. Comput. Ind. 83, 121–139 (2016)

    Article  Google Scholar 

  59. Pan, G., Pan, S.L., Lim, C.-Y.: Examining how firms leverage IT to achieve firm productivity. Info. and Man. 52, 401–412 (2015)

    Google Scholar 

  60. Pedersen, J., Neythalath, N., Hesslink, J., Søndergaard, A., Reinhardt, D.: Augmented drawn construction symbols: A method for ad hoc robotic fabrication, International Journal of Architectural Computing 2020, 18(3), 254–269 (2020). DOI: https://doi.org/10.1177/147807712094316.

  61. ROS robot operating system, https://www.ros.org/

  62. Reinhardt, D., Haeusler, H. , London, K., Loke, L., Feng, Y., Barata, E., Firth, C., Dunn, K., Khean, N., Fabbri, A., Wozniak-O’Connor, D., Masuda, R.: CoBuilt 4.0 - Investigating the Potential of Collaborative Robotics for Subject Matter Experts, IJAC International Journal of Architectural Computing (2020) https://doi.org/10.1177/1478077120948742

  63. Van Rijmenam, M.: The Organisation of Tomorrow. Routledge (2019)

    Book  Google Scholar 

  64. Robeller, C., Weinand, Y.: Fabrication-Aware Design of Timber Folded Plate Shells with Double Through Tenon Joints (2016). https://doi.org/10.1007/978-3-319-26378-6_12.

  65. RobotStudio, https://new.abb.com/products/robotics/robotstudio

  66. Rosenstrauch, M., Kruger, J.: Safe human-robot-collaboration introduction and experiment using iso/ts 15066, International conference on control, automation and robotics (ICCAR) IEEE, pp 740–744 (2017)

    Google Scholar 

  67. Ross et al Designed for Digital - How to architect your business for sustained success (2019) https://mitpress.mit.edu/books/designed-digital

  68. SQ4D Inc, Autonomous Robotic Construction System (ARCS): Robotic 3D printed house, https://www.therobotreport.com/robot-helps-3d-print-a-home-for-less-than-6000-in-materials/, access date 07 July, 2022.

  69. Schou, C., Madsen, O.: A plug and produce framework for industrial collaborative robots. International Journal of Advanced Robotic Systems, 14(4) (2017) https://doi.org/10.1177/1729881417717472

  70. Shinkle, G.A., Gooding, L.H., Smith, M.L.: Transforming strategy into success. Productivity Press, New York (2004)

    Book  Google Scholar 

  71. Skantze, G.: Turn-taking in Conversational Systems and Human-Robot Interaction: A Review. Elsevier (2020). https://doi.org/10.1016/j.csl.2020.101178

    Article  Google Scholar 

  72. Sobek, W.: Non Nobis - Ueber das Bauen in der Zukunft, Band 1: Ausgehen muss man von dem, was ist. Avedition, Ludwigsburg (2022)

    Google Scholar 

  73. Susskind, R., Susskind, D.: The Future of the Professions. Press, Oxford Uni (2016)

    MATH  Google Scholar 

  74. Vasey, L., Menges, A.: Potentials of cyber-physical systems in architecture and construction, Routledge (2020)

    Google Scholar 

  75. Wang, X.V., Kemény, Z., Váncza, J., Wang, L.: Human–robot collaborative assembly in cyber-physical production: Classification framework and implementation. CIRP Ann. 66(1), 5–8 (2017)

    Article  Google Scholar 

  76. Wang, B., Zhou, H., Yang, G., et al.: Human Digital Twin (HDT) Driven Human-Cyber-Physical Systems: Key Technologies and Applications. Chin. J. Mech. Eng. 35, 11 (2022). https://doi.org/10.1186/s10033-022-00680-w

    Article  Google Scholar 

  77. Willmann, J., Block, P., Hutter, M., Byrne, K., Schork, T.: Robotic Fabrication in Architecture, Art and Design 2018. Springer International Publishing Switzerland. (2019)

    Google Scholar 

  78. Yuan, P., Xie, M., Leach, N., Yao, J., Wang, X. (eds.): Architectural Intelligence–Selected Papers from the 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2019). Springer (2020). https://doi.org/10.1007/978-981-15-6568-7.pdf. Access date: Jul 7, 2022.

Download references

Acknowledgements

The authors acknowledge parts of Sect. 2 are aligned with the research and thinking of the Australian Research Council (ARC) Industry Transformation Training Centre for Next-Gen Architectural Manufacturing’ (IC2220100030). Findings published under Sect. 2 are the result of research towards the grant application and are the result of the team effort of the applicants.

Funding. Sections (Sect. 2) of this research was funded by the Australian Research Council (ARC) Industrial Transformation Training Centre for Next-Gen Architectural Manufacturing (IC2220100030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmar Reinhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reinhardt, D., Haeusler, M.H. (2024). From Technology to Strategy: Robotic Fabrication and Human Robot Collaboration for Increasing AEC Capacities. In: Barberio, M., Colella, M., Figliola, A., Battisti, A. (eds) Architecture and Design for Industry 4.0. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-36922-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36922-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36921-6

  • Online ISBN: 978-3-031-36922-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics