Skip to main content

MoTERNN: Classifying the Mode of Cancer Evolution Using Recursive Neural Networks

  • Conference paper
  • First Online:
Comparative Genomics (RECOMB-CG 2023)

Abstract

With the advent of single-cell DNA sequencing, it is now possible to infer the evolutionary history of thousands of tumor cells obtained from a single patient. This evolutionary history, which takes the shape of a tree, reveals the mode of evolution of the specific cancer under study and, in turn, helps with clinical diagnosis, prognosis, and therapeutic treatment. In this study we focus on the question of determining the mode of evolution of tumor cells from their inferred evolutionary history. In particular, we employ recursive neural networks that capture tree structures to classify the evolutionary history of tumor cells into one of four modes—linear, branching, neutral, and punctuated. We trained our model, MoTERNN, using simulated data in a supervised fashion and applied it to a real phylogenetic tree obtained from single-cell DNA sequencing data. MoTERNN is implemented in Python and is publicly available at https://github.com/NakhlehLab/MoTERNN.

This study was supported in part by the National Science Foundation, grants IIS-1812822 and IIS-2106837 (L.N.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A clone consists of a group of cells with similar genotypes.

  2. 2.

    Sometimes the acronym RvNN is used to distinguish it from recurrent neural networks.

  3. 3.

    Hereafter, we use embedding instead of vector embedding.

References

  1. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  2. Burrell, R.A., et al.: Tumour heterogeneity and the evolution of polyclonal drug resistance. Molecul. Oncol. 8(6), 1095–1111 (2014)

    Article  Google Scholar 

  3. Davis, A., et al.: Tumor evolution: Linear, branching, neutral or punctuated? Biochim. Biophys. Acta Rev. Cancer 1867(2), 151–161 (2017)

    Article  Google Scholar 

  4. Durrett, R., et al.: Intratumor heterogeneity in evolutionary models of tumor progression. Genetics 188(2), 461–477 (2011)

    Article  Google Scholar 

  5. Edrisi, M., et al.: Phylovar: Toward scalable phylogeny-aware inference of single-nucleotide variations from single-cell DNA sequencing data. Bioinformatics 38(Supplement 1), i195–i202 (2022)

    Google Scholar 

  6. Edrisi, M., et al.: A combinatorial approach for single-cell variant detection via phylogenetic inference. In: Huber, K.T., Gusfield, D. (eds.) 19th International Workshop on Algorithms in Bioinformatics (WABI 2019). Leibniz International Proceedings in Informatics (LIPIcs), vol. 143, pp. 22:1–22:13. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2019)

    Google Scholar 

  7. El-Kebir, M.: SPhyR: Tumor phylogeny estimation from single-cell sequencing data under loss and error. Bioinformatics 34(17), i671–i679 (2018)

    Google Scholar 

  8. Eldredge, N., et al.: Punctuated equilibria: An alternative to phyletic gradualism. In: Schopf, T.J.M. (ed.) Models in Paleobiology, pp. 82–115. Freeman Cooper (1972)

    Google Scholar 

  9. Excoffier, L., et al.: Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131(2), 479–491 (1992)

    Google Scholar 

  10. Fidler, I.J.: Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Res. 38(9), 2651–2660 (1978)

    Google Scholar 

  11. Gao, R., et al.: Punctuated copy number evolution and clonal stasis in triple-negative breast cancer. Nat. Genet. 48(10), 1119–1130 (2016)

    Article  Google Scholar 

  12. Gillies, R.J., et al.: Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nat. Rev. Cancer 12(7), 487–493 (2012)

    Article  Google Scholar 

  13. Goller, C., et al.: Learning task-dependent distributed representations by backpropagation through structure. In: Proceedings of International Conference on Neural Networks (ICNN 1996), vol. 1, pp. 347–352 (1996)

    Google Scholar 

  14. Hajirasouliha, I., et al.: A combinatorial approach for analyzing intra-tumor heterogeneity from high-throughput sequencing data. Bioinformatics 30(12), i78–i86 (2014)

    Google Scholar 

  15. Heath, T.A., et al.: Taxon sampling and the accuracy of phylogenetic analyses. J. System. Evol. 46(3), 239 (2008)

    Google Scholar 

  16. Jahn, K., et al.: Tree inference for single-cell data. Genom. Biol. 17(1), 86 (2016)

    Article  Google Scholar 

  17. Kim, C., et al.: Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing. Cell 173(4), 879–893 (2018)

    Google Scholar 

  18. Kimura, M.: Rare variant alleles in the light of the neutral theory. Molecul. Biol. Evol. 1(1), 84–93 (1983)

    Google Scholar 

  19. Kingma, D.P., et al.: Adam: A method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, 7–9 May 2015, Conference Track Proceedings (2015)

    Google Scholar 

  20. Kuipers, J., et al.: Single-cell copy number calling and event history reconstruction. bioRxiv (2020)

    Google Scholar 

  21. Liu, Y., et al.: Nestedbd: Bayesian inference of phylogenetic trees from single-cell DNA copy number profile data under a birth-death model. bioRxiv (2022)

    Google Scholar 

  22. Malikic, S., et al.: PhISCS: A combinatorial approach for subperfect tumor phylogeny reconstruction via integrative use of single-cell and bulk sequencing data. Genome Res. 29(11), 1860–1877 (2019)

    Article  Google Scholar 

  23. Mallory, X.F., et al.: Assessing the performance of methods for copy number aberration detection from single-cell DNA sequencing data. PLoS comput. Biol. 16(7), e1008012 (2020)

    Article  Google Scholar 

  24. Manceau, M., et al.: Model-based inference of punctuated molecular evolution. Molecul. Biol. Evol. 37(11), 3308–3323 (2020)

    Article  Google Scholar 

  25. Mardis, E.R.: A decade’s perspective on DNA sequencing technology. Nature 470(7333), 198–203 (2011)

    Article  Google Scholar 

  26. Merlo, L.M.F., et al.: Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 6(12), 924–935 (2006)

    Article  Google Scholar 

  27. Meyerson, M., et al.: Advances in understanding cancer genomes through second-generation sequencing. Nat. Rev. Genet. 11(10), 685–696 (2010)

    Article  Google Scholar 

  28. Minussi, D.C., et al.: Breast tumours maintain a reservoir of subclonal diversity during expansion. Nature 592(7853), 302–308 (2021)

    Article  Google Scholar 

  29. Moran, P.A.P.: Random processes in genetics. Math. Proc. Camb. Philos. Soc. 54(1), 60–71 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nabhan, A.R., et al.: The impact of taxon sampling on phylogenetic inference: A review of two decades of controversy. Brief. Bioinform. 13(1), 122–134 (2012)

    Article  Google Scholar 

  31. Navin, N., et al.: Tumour evolution inferred by single-cell sequencing. Nature 472(7341), 90–94 (2011)

    Article  Google Scholar 

  32. Nowell, P.C.: The clonal evolution of tumor cell populations. Science 194(4260), 23–28 (1976)

    Article  Google Scholar 

  33. Pascanu, R., et al.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318. PMLR (2013)

    Google Scholar 

  34. Pollack, J.B.: Recursive distributed representations. Artif. Intell. 46(1), 77–105 (1990)

    Article  Google Scholar 

  35. Posada, D.: Cellcoal: Coalescent simulation of single-cell sequencing samples. Molecul. Biol. Evol. 37(5), 1535–1542 (2020)

    Article  MathSciNet  Google Scholar 

  36. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv (2016)

    Google Scholar 

  37. Sadeqi Azer, E., et al.: Tumor phylogeny topology inference via deep learning. iScience 23(11), 101655 (2020)

    Article  Google Scholar 

  38. Sainudiin, R., et al.: A beta-splitting model for evolutionary trees. Roy. Soc. Open Sci. 3(11) (2015)

    Google Scholar 

  39. Sapoval, N., et al.: Current progress and open challenges for applying deep learning across the biosciences. Nat. Commun. 13(1), 1–12 (2022)

    Article  Google Scholar 

  40. Satas, G., et al.: SCARLET: Single-cell tumor phylogeny inference with copy-number constrained mutation losses. Cell Syst. 10(4), 323–332 (2020)

    Article  Google Scholar 

  41. Singer, J., et al.: Single-cell mutation identification via phylogenetic inference. Nat. Commun. 9(1), 5144 (2018)

    Article  Google Scholar 

  42. Socher, R., et al.: Parsing natural scenes and natural language with recursive neural networks. In: Proceedings of the 28th International Conference on International Conference on Machine Learning, pp. 129–136. Omnipress (2011)

    Google Scholar 

  43. Socher, R., et al.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631–1642. Association for Computational Linguistics (2013)

    Google Scholar 

  44. Swanton, C.: Intratumor heterogeneity: Evolution through space and time. Cancer Res. 72(19), 4875–4882 (2012)

    Article  Google Scholar 

  45. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075 (2015)

  46. Tang, F., et al.: mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6(5), 377–382 (2009)

    Article  Google Scholar 

  47. Trevino, V., et al.: DNA microarrays: A powerful genomic tool for biomedical and clinical research. Molecul. Med. 13(9), 527–541 (2007)

    Article  Google Scholar 

  48. Venkatesan, S., et al.: Tumor evolutionary principles: How intratumor heterogeneity influences cancer treatment and outcome. Am. Soc. Clin. Oncol. Educ. Book 36, e141–e149 (2016)

    Article  Google Scholar 

  49. Wang, Y., et al.: Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512(7513), 155–160 (2014)

    Article  Google Scholar 

  50. Weber, L.L., et al.: Distinguishing linear and branched evolution given single-cell DNA sequencing data of tumors. Algorithm. Molecul. Biol. 16(1), 14 (2021)

    Article  Google Scholar 

  51. Williams, M.J., et al.: Identification of neutral tumor evolution across cancer types. Nat. Genet. 48(3), 238–244 (2016)

    Article  Google Scholar 

  52. Zaccaria, S., et al.: Characterizing allele-and haplotype-specific copy numbers in single cells with chisel. Nat. Biotechnol. 39(2), 207–214 (2021)

    Article  Google Scholar 

  53. Zafar, H., et al.: SiFit: Inferring tumor trees from single-cell sequencing data under finite-sites models. Genome Biol. 18(1), 178 (2017)

    Article  Google Scholar 

  54. Zafar, H., et al.: SiCloneFit: Bayesian inference of population structure, genotype, and phylogeny of tumor clones from single-cell genome sequencing data. Genome Res. 29, 1860–1877 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammadamin Edrisi or Luay Nakhleh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Edrisi, M., Ogilvie, H.A., Li, M., Nakhleh, L. (2023). MoTERNN: Classifying the Mode of Cancer Evolution Using Recursive Neural Networks. In: Jahn, K., Vinař, T. (eds) Comparative Genomics. RECOMB-CG 2023. Lecture Notes in Computer Science(), vol 13883. Springer, Cham. https://doi.org/10.1007/978-3-031-36911-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36911-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36910-0

  • Online ISBN: 978-3-031-36911-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics