Skip to main content

An Introduction to Particle Tracking Techniques with Applications in Biomedical Research

  • Chapter
  • First Online:
Microscopy Techniques for Biomedical Education and Healthcare Practice

Part of the book series: Biomedical Visualization ((BV,volume 2))

Abstract

Due to their inherent complexity and diverse range of functions, biological systems—both at the cellular and tissue levels—continue to challenge the prowess of modern science. Despite significant advances toward understanding the core mechanisms driving such systems, unknown domains continue to hold back scientific progress. The advent of microscopy tools, especially epifluorescence and confocal microscopy for live cell imaging, has strengthened biology research. Emerging modalities of super-resolution microscopy are now providing crisp resolution, and the availability of tailor-made dyes for labeling biological samples, have also inspired the current generation of microscopists to investigate biological structures down to the nanoscale. Particle tracking techniques, especially single particle tracking that emerged as a component of a fast-evolving fluorescence microscopy landscape, are now pushing the current limits of technological excellence even further. With high-resolution imagery data acquisition, often conducted in a time-lapse mode, particle tracking tools are providing crucial insights into how the cells function with emphasis on metabolism, cytoskeletal dynamics, cell division, and phagocytosis. The further kinematic analysis delves deeper into the hitherto unknown realms of (nano)particulate transport, with or without receptor mediation, across biological membranes, followed by cellular internalization and intracellular fate, including subcellular compartmentalization. Such novel insights are not only widening the current knowledge base on complex biological systems but also guiding researchers toward developing effective theranostic agents for advanced drug delivery and biomedical imaging, including preparation of nanomedicinal formulations. This chapter revisits the current state-of-the-art particle tracking platforms while drawing inspiration from its wide range of biomedical applications, including therapeutics. In this journey, the chapter will present a balanced critique of the available tracking software packages along with their strengths and weaknesses. Finally, it will present some future perspectives from a vantage of current paradigms, caution the research community on the challenges that lie ahead, and highlight some approaches that need to be integrated into current concepts while progressing ahead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aoyama M, Yoshioka Y, Arai Y et al (2017) Intracellular trafficking of particles inside endosomal vesicles is regulated by particle size. J Control Release 260:183–193

    Article  CAS  PubMed  Google Scholar 

  • Assmus HE, Herwig R, Cho K-H, Wolkenhauer O (2006) Dynamics of biological systems: role of systems biology in medical research. Exp Rev Mol Diagn 6:891–902

    Article  Google Scholar 

  • Barton GM, Kagan JC (2009) A cell biological view of toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol 9:535–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharjee S, Brayden DJ (2021) Addressing the challenges to increase the efficiency of translating nanomedicine formulations to patients. Expert Opin Drug Discov 16:235–254

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee S, Gaspar MM, Scholz D, Almeida AJ, Brayden DJ (2018) Track analysis of the passage of rhodamine-labeled liposomes across porcine jejunal mucus in a microchannel device. Ther Deliv 9:419–433

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee S, Mahon E, Harrison SM et al (2017) Nanoparticle passage through porcine jejunal mucus: microfluidics and rheology. Nanomedicine NBM 13:863–873

    Article  CAS  Google Scholar 

  • Bhattacharjee S, Rietjens IMCM, Singh MP et al (2013) Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: the dominant role of surface charges. Nanoscale 5:4870–4883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blom H, Widengren J (2017) Stimulated emission depletion microscopy. Chem Rev 117:7377–7427

    Google Scholar 

  • Bos J, Cisneros LH, Mazel D (2021) Real-time tracking of bacterial membrane vesicles reveals enhanced membrane traffic upon antibiotic exposure. Sci Adv 7:eabd1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrne GD, Vllasaliu D, Falcone FH, Somekh MG, Stolnik S (2015) Live imaging of cellular internalization of single colloidal particle by combined label-free and fluorescence total internal reflection microscopy. Mol Pharm 12:3862–3870

    Article  CAS  PubMed  Google Scholar 

  • Cheng H-J, Hsu C-H, Hung C-L, Lin C-Y (2022) A review for cell and particle tracking on microscopy images using algorithms and deep learning technologies. Biom J 45:465–471

    Google Scholar 

  • Chenouard N, Smal I, De Chaumont F et al (2014) Objective comparison of particle tracking methods. Nat Methods 11:281–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chorfi H, Ayadi K, Bouamama L, Boufendi L (2020) Contribution to the study of cancer tissues by light scattering. Optik 221:165094

    Article  CAS  Google Scholar 

  • Comegna M, Conte G, Falanga AP et al (2021) Assisting PNA transport through cystic fibrosis human airway epithelia with biodegradable hybrid lipid-polymer nanoparticles. Sci Rep 11:6393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comes MC, Casti P, Mencattini A et al (2019) The influence of spatial and temporal resolutions on the analysis of cell-cell interaction: a systematic study for time-lapse microscopy applications. Sci Rep 9:6789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cretel E, Pierres A, Benoliel A-M, Bongrand P (2008) How cells feel their environment: a focus on early dynamic events. Cell Mol Bioeng 1:5–14

    Article  PubMed  Google Scholar 

  • Cui L, Li H, Xi Y et al (2022) Vesicle trafficking and vesicle fusion: mechanisms, biological functions, and their implications for potential disease therapy. Mol Biomed 3:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Y, Yu M, Yao X, Xing J, Lin J, Li X (2018) Single-particle tracking for the quantification of membrane protein dynamics in living plant cells. Mol Plant 11:1315–1327

    Article  CAS  PubMed  Google Scholar 

  • Dallet L, Stanicki D, Voisin P, Miraux S, Ribot EJ (2021) Micron-sized iron oxide particles for both MRI cell tracking and magnetic fluid hyperthermia treatment. Sci Rep 11:3286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeBerardinis RJ, Thompson CB (2012) Cellular metabolism and disease: what do metabolic outliers teach us? Cell 148:1132–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doll TAPF, Raman S, Dey R, Burkhard P (2013) Nanoscale assemblies and their biomedical applications. J R Soc Interface 10:20120740

    Article  PubMed  PubMed Central  Google Scholar 

  • Dosumu AN, Claire S, Watson LS et al (2021) Quantification by luminescence tracking of red emissive gold nanoparticles in cells. JACS Au 1:174–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dzyubachyk O, Essers J, Cappellen WAV et al (2010) Automated analysis of time-lapse fluorescence microscopy images: from live cell images to intracellular foci. Bioinformatics 26:2424–2430

    Article  CAS  PubMed  Google Scholar 

  • El Kaffas A, Bekah D, Rui M, Carl Kumaradas J, Kolios MC (2013) Investigating longitudinal changes in the mechanical properties of MCF-7 cells exposed to paclitaxol using particle tracking microrheology. Phys Med Biol 58:923

    Article  PubMed  Google Scholar 

  • Fahy JV, Dickey BF (2010) Airway mucus function and dysfunction. N Engl J Med 363:2233–2247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fasehee H, Dinarvand R, Ghavamzadeh A et al (2016) Delivery of disulfiram into breast cancer cells using folate-receptor-targeted PLGA-PEG nanoparticles: in vitro and in vivo investigations. J Nanobiotechnol 14:32

    Article  Google Scholar 

  • Fläschner G, Roman CI, Strohmeyer N, Martinez-Martin D, Müller DJ (2021) Rheology of rounded mammalian cells over continuous high-frequencies. Nat Commun 12:2922

    Article  PubMed  PubMed Central  Google Scholar 

  • Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463:485–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcés M, Cáceres L, Chiappetta D, Magnani N, Evelson P (2021) Current understanding of nanoparticle toxicity mechanisms and interactions with biological systems. New J Chem 45:14328–14344

    Article  Google Scholar 

  • Gardini L, Capitanio M, Pavone FS (2015) 3D tracking of single nanoparticles and quantum dots in living cells by out-of-focus imaging with diffraction pattern recognition. Sci Rep 5:16088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gautier MK, Ginsberg SD (2021) A method for quantification of vesicular compartments within cells using 3D reconstructed confocal z-stacks: comparison of ImageJ and Imaris to count early endosomes within basal forebrain cholinergic neurons. J Neurosci Methods 350:109038

    Article  PubMed  Google Scholar 

  • Genin E, Gao Z, Varela JA et al (2014) “Hyper-bright” near-infrared emitting fluorescent organic nanoparticles for single particle tracking. Adv Mater 26:2258–2261

    Article  CAS  PubMed  Google Scholar 

  • Goel S, England CG, Chen F, Cai W (2017) Positron emission tomography and nanotechnology: a dynamic duo for cancer theranostics. Adv Drug Deliv Rev 113:157–176

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Ha JW, Augspurger AE, Chen K, Zhu S, Fang N (2013) Single particle orientation and rotational tracking (SPORT) in biophysical studies. Nanoscale 5:10753–10764

    Article  CAS  PubMed  Google Scholar 

  • Guan L (2022) Structure and mechanism of membrane transporters. Sci Rep 12:13248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herráez-Aguilar D, Madrazo E, López-Menéndez H, Ramírez M, Monroy F, Redondo-Muñoz J (2020) Multiple particle tracking analysis in isolated nuclei reveals the mechanical phenotype of leukemia cells. Sci Rep 10:6707

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrmann IK, Wood MJA, Fuhrmann G (2021) Extracellular vesicles as a next-generation drug delivery platform. Nat Nanotechnol 16:748–759

    Article  CAS  PubMed  Google Scholar 

  • Jackson CB, Farzan M, Chen B, Choe H (2022) Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol 23:3–20

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Yang M, Li W, Dou S-X, Wang P-Y, Li H (2022) Spatiotemporal three-dimensional transport dynamics of endocytic cargos and their physical regulations in cells. iScience 25:104210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin S, Haggie PM, Verkman AS (2007) Single-particle tracking of membrane protein diffusion in a potential: simulation, detection, and application to confined diffusion of CFTR cl channels. Biophys J 93:1079–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalwarczyk T, Kwapiszewska K, Szczepanski K et al (2017) Apparent anomalous diffusion in the cytoplasm of human cells: the effect of probes’ polydispersity. J Phys Chem B 121:9831–9837

    Article  CAS  PubMed  Google Scholar 

  • Khater IM, Nabi IR, Hamarneh G (2020) A review of super-resolution single-molecule localization microscopy cluster analysis and quantification methods. Patterns 1:100038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim A, Shin T-H, Shin S-M et al (2012) Cellular internalization mechanism and intracellular trafficking of filamentous M13 phages displaying a cell-penetrating transbody and TAT peptide. PLoS One 7:e51813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ladoux B, Mège R-M (2017) Mechanobiology of collective cell behaviours. Nat Rev Mol Cell Biol 18:743–757

    Article  CAS  PubMed  Google Scholar 

  • Lai SK, Wang Y-Y, Hanes J (2009b) Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev 61:158–171

    Article  CAS  PubMed  Google Scholar 

  • Lai SK, Wang Y-Y, Wirtz D, Hanes J (2009a) Micro- and macrorheology of mucus. Adv Drug Deliv Rev 61:86–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lelek M, Gyparaki MT, Beliu G et al (2021) Single-molecule localization microscopy. Nat Rev Methods Primers 1:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemke EA, Klingauf J (2005) Single synaptic vesicle tracking in individual hippocampal boutons at rest and during synaptic activity. J Neurosci 25:11034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lepock JR (2005) How do cells respond to their thermal environment? Int J Hyperth 21:681–687

    Article  CAS  Google Scholar 

  • Li LD, Crouzier T, Sarkar A, Dunphy L, Han J, Ribbeck K (2013) Spatial configuration and composition of charge modulates transport into a mucin hydrogel barrier. Biophys J 105:1357–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang L, Li J, Li Q et al (2014) Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. Angew Chem Int Ed 53:7745–7750

    Article  CAS  Google Scholar 

  • Lieleg O, Vladescu I, Ribbeck K (2010) Characterization of particle translocation through mucin hydrogels. Biophys J 98:1782–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Y, Han Y, Hu X et al (2019) Live-cell imaging of octaarginine-modified polymer dots via single particle tracking. Cell Prolif 52:e12556

    Article  PubMed  PubMed Central  Google Scholar 

  • May JN, Golombek SK, Baues M et al (2020) Multimodal and multiscale optical imaging of nanomedicine delivery across the blood-brain barrier upon sonopermeation. Theranostics 10:1948–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R (2021) Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 20:101–124

    Article  CAS  PubMed  Google Scholar 

  • Morrison CB, Markovetz MR, Ehre C (2019) Mucus, mucins, and cystic fibrosis. Pediatr Pulmonol 54:S84–S96

    Article  PubMed  PubMed Central  Google Scholar 

  • Muzzey D, van Oudenaarden A (2009) Quantitative time-lapse fluorescence microscopy in single cells. Annu Rev Cell Dev Biol 25:301–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann B, Walter T, Hériché J-K et al (2010) Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464:721–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega MA, Fraile-Martinez O, Garcia-Montero C et al (2022) An updated view of the importance of vesicular trafficking and transport and their role in immune-mediated diseases: potential therapeutic interventions. Membranes 12:552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popp AK, Valentine MT, Kaplan PD, Weitz DA (2003) Microscopic origin of light scattering in tissue. Appl Opt 42:2871–2880

    Article  PubMed  Google Scholar 

  • Pore M, Ong GH, Boyce CM et al (2015) A comparison of magnetic resonance, X-ray and positron emission particle tracking measurements of a single jet of gas entering a bed of particles. Chem Eng Sci 122:210–218

    Article  CAS  Google Scholar 

  • Reeβing F, Szymanski W (2019) Following nanomedicine activation with magnetic resonance imaging: why, how, and what’s next? Curr Opin Biotechnol 58:9–18

    Article  PubMed  Google Scholar 

  • Rennick JJ, Johnston APR, Parton RG (2021) Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat Nanotechnol 16:266–276

    Article  CAS  PubMed  Google Scholar 

  • Reverey JF, Jeon J-H, Bao H, Leippe M, Metzler R, Selhuber-Unkel C (2015) Super-diffusion dominates intracellular particle motion in the supercrowded cytoplasm of pathogenic Acanthamoeba castellanii. Sci Rep 5:11690

    Article  PubMed  PubMed Central  Google Scholar 

  • Rigato A, Miyagi A, Scheuring S, Rico F (2017) High-frequency microrheology reveals cytoskeleton dynamics in living cells. Nat Phys 13:771–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenblum D, Joshi N, Tao W, Karp JM, Peer D (2018) Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun 9:1410

    Article  PubMed  PubMed Central  Google Scholar 

  • Ross TD, Lee HJ, Qu Z, Banks RA, Phillips R, Thomson M (2019) Controlling organization and forces in active matter through optically defined boundaries. Nature 572:224–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagle LB, Ruvuna LK, Bingham JM, Liu C, Cremer PS, Van Duyne RP (2012) Single plasmonic nanoparticle tracking studies of solid supported bilayers with ganglioside lipids. J Am Chem Soc 134:15832–15839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saminathan A, Zajac M, Anees P, Krishnan Y (2022) Organelle-level precision with next-generation targeting technologies. Nat Rev Mater 7:355–371

    Article  Google Scholar 

  • van der Schaar HM, Rust MJ, Chen C et al (2008) Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. PLoS Pathog 4:e1000244

    Article  PubMed  PubMed Central  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  • Schlessinger J (1997) Direct binding and activation of receptor tyrosine kinases by collagen. Cell 91:869–872

    Article  CAS  PubMed  Google Scholar 

  • Schmidt T, Schütz GJ, Baumgartner W, Gruber HJ, Schindler H (1996) Imaging of single molecule diffusion. Proc Natl Acad Sci U S A 93:2926–2929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultze B, Karbasi P, Sarosiek C et al (2021) Particle-tracking proton computed tomography—data acquisition, pre-processing, and preconditioning. IEEE Access 9:25946–25958

    Article  PubMed  PubMed Central  Google Scholar 

  • Shapiro EM, Skrtic S, Sharer K, Hill JM, Dunbar CE, Koretsky AP (2004) MRI detection of single particles for cellular imaging. Proc Natl Acad Sci U S A 101:10901–10906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shechtman Y, Weiss LE, Backer AS, Sahl SJ, Moerner WE (2015) Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions. Nano Lett 15:4194–4199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen H, Tauzin LJ, Baiyasi R et al (2017) Single particle tracking: from theory to biophysical applications. Chem Rev 117:7331–7376

    Article  CAS  PubMed  Google Scholar 

  • Siddhanta S, Bhattacharjee S, Harrison SM, Scholz D, Barman I (2019) Shedding light on the trehalose-enabled mucopermeation of nanoparticles with label-free Raman spectroscopy. Small 15:1901679

    Article  Google Scholar 

  • Song Y, Geng Y, Shen L (2021) Visualizing super-diffusion, oligomerization, and fibrillation of amyloid-β peptide chains along tubular membranes. ACS Macro Lett 10:1295–1299

    Article  CAS  PubMed  Google Scholar 

  • Spitzer J, Poolman B (2009) The role of biomacromolecular crowding, ionic strength, and physicochemical gradients in the complexities of life’s emergence. Microbiol Mol Biol Rev 73:371–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steelman ZA, Ho DS, Chu KK, Wax A (2019) Light-scattering methods for tissue diagnosis. Optica 6:479–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szczurek A, Contu F, Hoang A, Dobrucki J, Mai S (2018) Aqueous mounting media increasing tissue translucence improve image quality in structured illumination microscopy of thick biological specimen. Sci Rep 8:13971

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang DD, Gerlach BD (2017) The roles and regulation of the actin cytoskeleton, intermediate filaments and microtubules in smooth muscle cell migration. Respir Res 18:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor AC (1962) Responses of cells to pH changes in the medium. J Cell Biol 15:201–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tenchov R, Sasso JM, Wang X, Liaw W-S, Chen CA, Zhou QA (2022) Exosomes─Nature’s lipid nanoparticles, a rising star in drug delivery and diagnostics. ACS Nano 16:17802–17846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tinevez J-Y, Perry N, Schindelin J et al (2017) TrackMate: an open and extensible platform for single-particle tracking. Methods 115:80–90

    Article  CAS  PubMed  Google Scholar 

  • Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160

    Article  CAS  PubMed  Google Scholar 

  • Tseng Y, Kole TP, Wirtz D (2002) Micromechanical mapping of live cells by multiple-particle-tracking microrheology. Biophys J 83:3162–3176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tumpa TR, Acuff SN, Gregor J, Bradley Y, Fu Y, Osborne DR (2022) Data-driven head motion correction for PET using time-of-flight and positron emission particle tracking techniques. PLoS One 17:e0272768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tvaruskó W, Bentele M, Misteli T et al (1999) Time-resolved analysis and visualization of dynamic processes in living cells. Proc Natl Acad Sci U S A 96:7950–7955

    Article  PubMed  PubMed Central  Google Scholar 

  • Vicidomini G, Bianchini P, Diaspro A (2018) STED super-resolved microscopy. Nat Methods 15:173–182

    Article  CAS  PubMed  Google Scholar 

  • Wan X-Y, Zheng L-L, Gao P-F et al (2014) Real-time light scattering tracking of gold nanoparticles- bioconjugated respiratory syncytial virus infecting HEp-2 cells. Sci Rep 4:4529

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, He H, Zhang Q et al (2021b) Deep-learning-assisted single-molecule tracking on a live cell membrane. Anal Chem 93:8810–8816

    Article  CAS  Google Scholar 

  • Wang Y-Y, Lai SK, So C, Schneider C, Cone R, Hanes J (2011) Mucoadhesive nanoparticles may disrupt the protective human mucus barrier by altering its microstructure. PLoS One 6:e21547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Wang X, Zhang Y, Xu W, Han X (2021a) Principles and applications of single particle tracking in cell research. Small 17:2005133

    Article  CAS  Google Scholar 

  • Waters CM, Goldberg JB (2019) Pseudomonas aeruginosa in cystic fibrosis: a chronic cheater. Proc Natl Acad Sci U S A 116:6525–6527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu P-H, Gambhir SS, Hale CM, Chen WC, Wirtz D, Smith BR (2020) Particle tracking microrheology of cancer cells in living subjects. Mater Today 39:98–109

    Article  CAS  Google Scholar 

  • Xing Y, Cheng Z, Wang R, Lv C, James TD, Yu F (2020) Analysis of extracellular vesicles as emerging theranostic nanoplatforms. Coord Chem Rev 424:213506

    Article  CAS  Google Scholar 

  • Yin-Quan C, Chia-Yu K, Ming-Tzo W et al (2013) Intracellular viscoelasticity of HeLa cells during cell division studied by video particle-tracking microrheology. J Biomed Opt 19:011008

    Article  Google Scholar 

  • Yu B, Yu J, Li W et al (2016) Nanoscale three-dimensional single particle tracking by light-sheet-based double-helix point spread function microscopy. Appl Opt 55:449–453

    Article  CAS  PubMed  Google Scholar 

  • Yuan S, Hollinger M, Lachowicz-Scroggins ME et al (2015) Oxidation increases mucin polymer cross-links to stiffen airway mucus gels. Sci Transl Med 7:276ra27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahid MU, Ma L, Lim SJ, Smith AM (2018) Single quantum dot tracking reveals the impact of nanoparticle surface on intracellular state. Nat Commun 9:1830

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author remains grateful to Professor Dimitri Scholz from the Bioimaging Core Facility at the University College Dublin Conway Institute of Biomolecular and Biomedical Research and Dr. Massimiliano Garrè from the Super-Resolution Imaging Consortium at the Royal College of Surgeons in Ireland, for being excellent teachers and mentors in advanced microscopic techniques, including single particle tracking. Many of the pearls of wisdom conveyed in the manuscript were passed on to the author by these two amazing colleagues and scientists over stimulating discussions and enjoyable training sessions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourav Bhattacharjee .

Editor information

Editors and Affiliations

Ethics declarations

The author would like to thank UCD Research Output Based Research Support Scheme (OBRSS) for funding.

Conflict of Interest

None declared.

Ethics Approval

Not required.

Data Availability Statement

No novel data was reported in the manuscript. Further information on the reported data may be obtained from the author upon reasonable request.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharjee, S. (2023). An Introduction to Particle Tracking Techniques with Applications in Biomedical Research. In: Shapiro, L. (eds) Microscopy Techniques for Biomedical Education and Healthcare Practice . Biomedical Visualization, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-031-36850-9_6

Download citation

Publish with us

Policies and ethics