Skip to main content

Trace Recovery: Attacking and Defending the User Privacy in Smart Meter Data Analytics

  • Conference paper
  • First Online:
E-Business and Telecommunications (ICETE 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1795))

Included in the following conference series:

  • 150 Accesses

Abstract

Energy consumption data is collected the service providers and shared with various stakeholders involved in a smart grid ecosystem. The fine-grained energy consumption data is immensely useful for maintaining and operating grid services. Further, these data can be used for future consumption prediction using machine learning and statistical models and market segmentation purposes. However, sharing and releasing fine-grained energy data or releasing predictive models trained on user-specific data induce explicit violations of private information of consumers [34, 41]. Thus, the service providers may share and release aggregated statistics to protect the privacy of users aiming at mitigating the privacy risks of individual users’ consumption traces. In this chapter, we show that an attacker can recover individual users’ traces of energy consumption data by exploiting regularity and uniqueness properties of individual consumption load patterns. We propose an unsupervised attack framework to recover hourly energy consumption time-series of users without any background information. We construct the problem of assigning aggregated energy consumption meter readings to individual users as a mathematical assignment problem and solve it by the Hungarian algorithm [30, 50]. We used two real-world datasets to demonstrate an attacker’s performance in recovering private traits of users. Our results show that an attacker is capable of recovering 70% of users’ energy consumption patterns with over 90% accuracy. Finally, we proposed few defense techniques, such as differential privacy and federated machine learning that may potentially help reduce an attacker’s capability to infer users’ private information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In general, time steps t and \(t + 1\) represent consecutive, potentially equally-spaced, times. In this chapter, they represent hours.

  2. 2.

    https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households.

  3. 3.

    https://data.gov.au/data/dataset/smart-grid-smart-city-customer-trial-data.

  4. 4.

    https://cloud.google.com/ai-platform.

  5. 5.

    https://aws.amazon.com/sagemaker/.

  6. 6.

    https://www.bigml.com/.

  7. 7.

    https://azure.microsoft.com/en-au/services/machine-learning/.

  8. 8.

    https://docs.aws.amazon.com/forecast/latest/dg/aws-forecast-recipe-arima.html.

  9. 9.

    https://docs.aws.amazon.com/sagemaker/latest/dg/deepar.html.

References

  1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318 (2016)

    Google Scholar 

  2. Abdallah, A., Shen, X.S.: A lightweight lattice-based homomorphic privacy-preserving data aggregation scheme for smart grid. IEEE Trans. Smart Grid 9(1), 396–405 (2016)

    Article  Google Scholar 

  3. Barzegar, M., Shajari, M.: Attack scenario reconstruction using intrusion semantics. Expert Syst. Appl. 108, 119–133 (2018)

    Article  Google Scholar 

  4. Bonawitz, K., et al.: Towards federated learning at scale: system design. arXiv preprint arXiv:1902.01046 (2019)

  5. Buescher, N., Boukoros, S., Bauregger, S., Katzenbeisser, S.: Two is not enough: privacy assessment of aggregation schemes in smart metering. Proc. Privacy Enhanc. Technol. 2017(4), 198–214 (2017)

    Article  Google Scholar 

  6. Bun, M., Steinke, T.: Concentrated differential privacy: simplifications, extensions, and lower bounds. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 635–658. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4_24

    Chapter  Google Scholar 

  7. Chen, K., He, Z., Wang, S.X., Hu, J., Li, L., He, J.: Learning-based data analytics: moving towards transparent power grids. CSEE J. Power Energy Syst. 4(1), 67–82 (2018)

    Google Scholar 

  8. Dong, X., Zhou, J., Cao, Z.: Efficient privacy-preserving temporal and spacial data aggregation for smart grid communications. Concurr. Comput. Pract. Exp. 28(4), 1145–1160 (2016)

    Article  Google Scholar 

  9. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_1

    Chapter  MATH  Google Scholar 

  10. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, ourselves: privacy via distributed noise generation. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_29

    Chapter  Google Scholar 

  11. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14

    Chapter  Google Scholar 

  12. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Dwork, C., Rothblum, G.N.: Concentrated differential privacy. arXiv preprint arXiv:1603.01887 (2016)

  14. Dwork, C., Smith, A., Steinke, T., Ullman, J.: Exposed! a survey of attacks on private data. Annu. Rev. Stat. Appl. 4, 61–84 (2017)

    Article  Google Scholar 

  15. Efthymiou, C., Kalogridis, G.: Smart grid privacy via anonymization of smart metering data. In: 2010 First IEEE International Conference on Smart Grid Communications, pp. 238–243. IEEE (2010)

    Google Scholar 

  16. ENA-Report. Energy networks association: smart meter aggregation assessment final report (2015)

    Google Scholar 

  17. Erkin, Z., Tsudik, G.: Private computation of spatial and temporal power consumption with smart meters. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 561–577. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31284-7_33

    Chapter  Google Scholar 

  18. Farokhi, F.: Review of results on smart-meter privacy by data manipulation, demand shaping, and load scheduling. IET Smart Grid (2020)

    Google Scholar 

  19. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit confidence information and basic countermeasures. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1322–1333 (2015)

    Google Scholar 

  20. Gong, N.Z., Liu, B.: You are who you know and how you behave: attribute inference attacks via users’ social friends and behaviors. In: 25th \(\{\)USENIX\(\}\) Security Symposium (\(\{\)USENIX\(\}\) Security 16), pp. 979–995 (2016)

    Google Scholar 

  21. Gong, N.Z., Liu, B.: Attribute inference attacks in online social networks. ACM Trans. Privacy Secur. (TOPS) 21(1), 1–30 (2018)

    Article  Google Scholar 

  22. Habtemariam, B., Miranskyy, A., Miri, A., Samet, S., Davison, M.: Privacy preserving predictive analytics with smart meters. In: 2016 IEEE International Congress on Big Data (BigData Congress), pp. 190–197. IEEE (2016)

    Google Scholar 

  23. Revuelta Herrero, J., et al.: Non intrusive load monitoring (NILM): a state of the art. In: De la Prieta, F., et al. (eds.) PAAMS 2017. AISC, vol. 619, pp. 125–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-61578-3_12

    Chapter  Google Scholar 

  24. Hong, Y., Liu, W.M., Wang, L.: Privacy preserving smart meter streaming against information leakage of appliance status. IEEE Trans. Inf. Forensics Secur. 12(9), 2227–2241 (2017)

    Google Scholar 

  25. Hossain, Md.N., et al.: \(\{\)SLEUTH\(\}\): real-time attack scenario reconstruction from \(\{\)COTS\(\}\) audit data. In: 26th \(\{\)USENIX\(\}\) Security Symposium (\(\{\)USENIX\(\}\) Security 17), pp. 487–504 (2017)

    Google Scholar 

  26. Jayaraman, B., Evans, D.: Evaluating differentially private machine learning in practice. In: 28th \(\{\)USENIX\(\}\) Security Symposium (\(\{\)USENIX\(\}\) Security 19), pp. 1895–1912 (2019)

    Google Scholar 

  27. Jia, J., Gong, N.Z.: Attriguard: a practical defense against attribute inference attacks via adversarial machine learning. In: 27th \(\{\)USENIX\(\}\) Security Symposium (\(\{\)USENIX\(\}\) Security 18), pp. 513–529 (2018)

    Google Scholar 

  28. Kelly, J., Knottenbelt, W.: Neural NILM: deep neural networks applied to energy disaggregation. In: Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments, pp. 55–64 (2015)

    Google Scholar 

  29. Knirsch, F., Eibl, G., Engel, D.: Error-resilient masking approaches for privacy preserving data aggregation. IEEE Trans. Smart Grid 9(4), 3351–3361 (2016)

    Article  Google Scholar 

  30. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logist. Q. 2(1–2), 83–97 (1955)

    Google Scholar 

  31. Lee, Y.-T., Hsiao, W.-H., Lin, Y.-S., Chou, S.-C.T.: Privacy-preserving data analytics in cloud-based smart home with community hierarchy. IEEE Trans. Consum. Electron. 63(2), 200–207 (2017)

    Google Scholar 

  32. Liu, Y., Guo, W., Fan, C.-I., Chang, L., Cheng, C.: A practical privacy-preserving data aggregation (3pda) scheme for smart grid. IEEE Trans. Industr. Inf. 15(3), 1767–1774 (2018)

    Article  Google Scholar 

  33. Makhdoom, I., Zhou, I., Abolhasan, M., Lipman, J., Ni, W.: Privysharing: a blockchain-based framework for privacy-preserving and secure data sharing in smart cities. Comput. Secur. 88, 101653 (2020)

    Article  Google Scholar 

  34. Molina-Markham, A., Shenoy, P., Fu, K., Cecchet, E., Irwin, D.: Private memoirs of a smart meter. In: Proceedings of the 2nd ACM workshop on Embedded Sensing Systems for Energy-Efficiency in Building, pp. 61–66. ACM (2010)

    Google Scholar 

  35. Palanisamy, B., Li, C., Krishnamurthy, P.: Group differential privacy-preserving disclosure of multi-level association graphs. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp. 2587–2588. IEEE (2017)

    Google Scholar 

  36. Reinhardt, A., Egarter, D., Konstantinou, G., Christin, D.: Worried about privacy? Let your PV converter cover your electricity consumption fingerprints. In: 2015 IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 25–30. IEEE (2015)

    Google Scholar 

  37. Salem, A., Bhattacharya, A., Backes, M., Fritz, M., Zhang, Y.: Updates-leak: data set inference and reconstruction attacks in online learning. In: 29th \(\{\)USENIX\(\}\) Security Symposium (\(\{\)USENIX\(\}\) Security 20), pp. 1291–1308 (2020)

    Google Scholar 

  38. Sankar, L., Rajagopalan, S.R., Mohajer, S., Poor, H.V.: Smart meter privacy: a theoretical framework. IEEE Trans. Smart Grid 4(2), 837–846 (2012)

    Google Scholar 

  39. Shateri, M., Messina, F., Piantanida, P., Labeau, F.: Deep directed information-based learning for privacy-preserving smart meter data release. In: 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), pp. 1–7. IEEE (2019)

    Google Scholar 

  40. Sheikh, N., Lu, Z., Asghar, H., Kaafar, M.: Trace recovery: inferring fine-grained trace of energy data from aggregates. In: Proceedings of the 18th International Conference on Security and Cryptography - Volume 1: SECRYPT, pp. 283–294. INSTICC, SciTePress (2021)

    Google Scholar 

  41. Sheikh, N.U., Asghar, H.J., Farokhi, F., Kaafar, M.A.: Do auto-regressive models protect privacy inferring fine-grained energy consumption from aggregated model parameters. IEEE Trans. Serv. Comput. (2021)

    Google Scholar 

  42. Sirojan, T., Lu, S., Phung, B.T., Ambikairajah, E.: Embedded edge computing for real-time smart meter data analytics. In: 2019 International Conference on Smart Energy Systems and Technologies (SEST), pp. 1–5. IEEE (2019)

    Google Scholar 

  43. Vahedi, E., Bayat, M., Pakravan, M.R., Aref, M.R.: A secure ECC-based privacy preserving data aggregation scheme for smart grids. Comput. Netw. 129, 28–36 (2017)

    Google Scholar 

  44. Veale, M., Binns, R., Edwards, L.: Algorithms that remember: model inversion attacks and data protection law. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 376(2133), 20180083 (2018)

    Article  Google Scholar 

  45. Wang, H., Wen, X., Xu, Y., Zhou, B., Peng, J.-C., Liu, W.: Operating state reconstruction in cyber physical smart grid for automatic attack filtering. IEEE Trans. Ind. Inform. (2020)

    Google Scholar 

  46. Wang, Y., Chen, Q., Hong, T., Kang, C.: Review of smart meter data analytics: applications, methodologies, and challenges. IEEE Trans. Smart Grid 10(3), 3125–3148 (2018)

    Article  Google Scholar 

  47. Wei, K., et al.: Federated learning with differential privacy: algorithms and performance analysis. IEEE Trans. Inf. Forensics Secur. 15, 3454–3469 (2020)

    Article  Google Scholar 

  48. Wen, M., Rongxing, L., Zhang, K., Lei, J., Liang, X., Shen, X.: Parq: a privacy-preserving range query scheme over encrypted metering data for smart grid. IEEE Trans. Emerg. Top. Comput. 1(1), 178–191 (2013)

    Article  Google Scholar 

  49. Chang, X., et al.: Aggregate in my way: privacy-preserving data aggregation without trusted authority in ICN. Futur. Gener. Comput. Syst. 111, 107–116 (2020)

    Article  Google Scholar 

  50. Xu, F., Tu, Z., Li, Y., Zhang, P., Fu, X., Jin, D.: Trajectory recovery from ash: user privacy is not preserved in aggregated mobility data. In: Proceedings of the 26th International Conference on World Wide Web, pp. 1241–1250 (2017)

    Google Scholar 

  51. Yang, L., Chen, X., Zhang, J., Poor, H.V.: Cost-effective and privacy-preserving energy management for smart meters. IEEE Trans. Smart Grid 6(1), 486–495 (2014)

    Google Scholar 

  52. Zhang, J., Chen, X., Ng, W.W.Y., Lai, C.S., Lai, L.L.: New appliance detection for nonintrusive load monitoring. IEEE Trans. Ind. Inform. 15(8), 4819–4829 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazim Uddin Sheikh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sheikh, N.U., Lu, Z., Asghar, H.J., Kaafar, M.A. (2023). Trace Recovery: Attacking and Defending the User Privacy in Smart Meter Data Analytics. In: Samarati, P., van Sinderen, M., Vimercati, S.D.C.d., Wijnhoven, F. (eds) E-Business and Telecommunications. ICETE 2021. Communications in Computer and Information Science, vol 1795. Springer, Cham. https://doi.org/10.1007/978-3-031-36840-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36840-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36839-4

  • Online ISBN: 978-3-031-36840-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics