Abstract
The core of Atomic Force Microscopy (AFM) is a nanometric tip mounted at the extreme of a microcantilever that scans the surface where the virus particles are adsorbed. Beyond obtaining nanometric resolution of individual viruses in liquid environment, AFM allows the manipulation of single particles, the exploration of virus biomechanics and to monitor assembly/disassembly processes, including genome release in real time. This chapter starts providing some inputs about virus adsorption on surfaces and imaging, including an example of tip dilation artifacts. Later, we exemplify how to monitor the effects of changing the chemical environment of the liquid cell on TGEV coronavirus particles. We go on by describing approaches to study genome release, aging, and multilayered viruses with single indentation and mechanical fatigue assays. The chapter ends explaining an AFM/fluorescence combination to study the influence of crowding on GFP within P22 bacteriophage capsids.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Flint SJ, Enquist LW, Racaniello VR, Skalka AM (2004) Principles of virology. ASM Press, Washington D.C.
Douglas T, Young M (1998) Host–guest encapsulation of materials by assembled virus protein cages. Nature 393:152–155. https://doi.org/10.1038/30211
Mateu MG (2013) Assembly, stability and dynamics of virus capsids. Arch Biochem Biophys 531:65–79. https://doi.org/10.1016/j.abb.2012.10.015
Minton AP (2006) How can biochemical reactions within cells differ from those in test tubes? J Cell Sci 119:2863–2869. https://doi.org/10.1242/jcs.03063
Agirre J, Aloria K, Arizmendi JM et al (2011) Capsid protein identification and analysis of mature Triatoma virus (TrV) virions and naturally occurring empty particles. Virology 409:91–101. https://doi.org/10.1016/j.virol.2010.09.034
Cordova A, Deserno M, Gelbart WM, Ben-Shaul A (2003) Osmotic shock and the strength of viral capsids. Biophys J 85:70–74. https://doi.org/10.1016/S0006-3495(03)74455-5
Baker TS, Olson NH, Fuller SD (1999) Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiol Mol Biol Rev. https://doi.org/10.1128/MMBR.63.4.862-922.1999
Egan P, Sinko R, LeDuc PR, Keten S (2015) The role of mechanics in biological and bio-inspired systems. Nat Commun 6:7418. https://doi.org/10.1038/ncomms8418
Ivanovska IL, de Pablo PJ, Ibarra B et al (2004) Bacteriophage capsids: tough nanoshells with complex elastic properties. Proc Natl Acad Sci 101:7600–7605. https://doi.org/10.1073/pnas.0308198101
de Pablo PJ (2018) Atomic force microscopy of virus shells. In: Seminars in cell & developmental biology. Academic Press, pp 199–208
Müller DJ, Amrein M, Engel A (1997) Adsorption of biological molecules to a solid support for scanning probe microscopy. J Struct Biol 119:172–188. https://doi.org/10.1006/jsbi.1997.3875
Zeng C, Hernando-Pérez M, Dragnea B et al (2017) Contact mechanics of a small icosahedral virus. Phys Rev Lett 119:038102. https://doi.org/10.1103/PhysRevLett.119.038102
Armanious A, Aeppli M, Jacak R et al (2016) Viruses at solid-water interfaces: a systematic assessment of interactions driving adsorption. Environ Sci Technol 50:732–743. https://doi.org/10.1021/acs.est.5b04644
Llauró A, Guerra P, Irigoyen N et al (2014) Mechanical stability and reversible fracture of vault particles. Biophys J 106:687–695. https://doi.org/10.1016/j.bpj.2013.12.035
Llauró A, Luque D, Edwards E et al (2016) Cargo–shell and cargo–cargo couplings govern the mechanics of artificially loaded virus-derived cages. Nanoscale 8:9328–9336
Zeng C, Hernando-Perez M, Dragnea B et al (2017) Contact Mechanics of a Small Icosahedral Virus. Phys Rev Lett 119:038102. https://doi.org/10.1103/PhysRevLett.119.038102
Carpick RW, Ogletree DF, Salmeron M (1997) Lateral stiffness: A new nanomechanical measurement for the determination of shear strengths with friction force microscopy. Appl Phys Lett 70:1548–1550. https://doi.org/10.1063/1.118639
Kuznetsov Y, Gershon PD, McPherson A (2008) Atomic force microscopy investigation of vaccinia virus structure. J Virol 82:7551–7566. https://doi.org/10.1128/jvi.00016-08
Vinckier A, Heyvaert I, D’Hoore A et al (1995) Immobilizing and imaging microtubules by atomic force microscopy. Ultramicroscopy 57:337–343. https://doi.org/10.1016/0304-3991(94)00194-r
Carrasco C, Luque A, Hernando-Pérez M et al (2011) Built-in mechanical stress in viral shells. Biophys J 100:1100–1108. https://doi.org/10.1016/j.bpj.2011.01.008
Roos WH (2018) AFM nanoindentation of protein shells, expanding the approach beyond viruses. Semin Cell Dev Biol 73:145–152. https://doi.org/10.1016/j.semcdb.2017.07.044
Ortega-Esteban A, Horcas I, Hernando-Perez M et al (2012) Minimizing tip-sample forces in jumping mode atomic force microscopy in liquid. Ultramicroscopy 114:56–61
Legleiter J, Park M, Cusick B, Kowalewski T (2006) Scanning probe acceleration microscopy (SPAM) in fluids: mapping mechanical properties of surfaces at the nanoscale. Proc Natl Acad Sci 103:4813–4818. https://doi.org/10.1073/pnas.0505628103
Villarrubia JS (1997) Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J Res Natl Inst Stand Technol 102:425–454. https://doi.org/10.6028/jres.102.030
Horcas I, Fernández R, Gomez-Rodriguez JM, Colchero JW, Gómez-Herrero JW, Baro AM (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78(1):013705. https://doi.org/10.1063/1.2432410
Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084
Tang J, Olson N, Jardine PJ et al (2008) DNA poised for release in bacteriophage ø29. Structure 16:935–943. https://doi.org/10.1016/j.str.2008.02.024
Risco C, Antón IM, Enjuanes L, Carrascosa JL (1996) The transmissible gastroenteritis coronavirus contains a spherical core shell consisting of M and N proteins. J Virol 70:4773–4777
Casanova L, Rutala WA, Weber DJ, Sobsey MD (2009) Survival of surrogate coronaviruses in water. Water Res 43:1893–1898. https://doi.org/10.1016/j.watres.2009.02.002
Kiss B, Kis Z, Pályi B, Kellermayer MSZ (2021) Topography, spike dynamics, and nanomechanics of individual native SARS-CoV-2 virions. Nano Lett 21:2675–2680. https://doi.org/10.1021/acs.nanolett.0c04465
Perez-Illana M, Martin-Gonzalez N, Hernando-Perez M et al (2021) Acidification induces condensation of the adenovirus core. Acta Biomater 135:534–542. https://doi.org/10.1016/j.actbio.2021.08.019
Cantero M, Carlero D, Chichón FJ et al (2022) Monitoring SARS-CoV-2 surrogate TGEV individual virions structure survival under harsh physicochemical environments. Cells 11:1759. https://doi.org/10.3390/cells11111759
Zink M, Grubmüller H (2009) Mechanical properties of the icosahedral shell of southern bean mosaic virus: a molecular dynamics study. Biophys J 96:1350–1363. https://doi.org/10.1016/j.bpj.2008.11.028
Ortega-Esteban Á, Mata CP, Rodríguez-Espinosa MJ et al (2020) Cryo-electron microscopy structure, assembly, and mechanics show morphogenesis and evolution of human picobirnavirus. J Virol 94:e01542-e1620. https://doi.org/10.1128/JVI.01542-20
Landau Theory of Elasticity - 3rd Edition. https://www.elsevier.com/books/theory-of-elasticity/landau/978-0-08-057069-3?country=ES&format=print&utm_source=google_ads&utm_medium=paid_search&utm_campaign=spainshopping&gclid=CjwKCAiAv9ucBhBXEiwA6N8nYFtCfz0HTtRL1L1syWMEHTtv-UorKaSJ__wX7OwicfFg6RH2LwSclRoCE24QAvD_BwE&gclsrc=aw.ds. Accessed 12 Dec 2022
Katen S, Zlotnick A (2009) The Thermodynamics of virus capsid assembly. Methods Enzymol 455:395–417. https://doi.org/10.1016/S0076-6879(08)04214-6
Ortega-Esteban A, Condezo GN, Pérez-Berná AJ et al (2015) Mechanics of viral chromatin reveals the pressurization of human adenovirus. ACS Nano 9:10826–10833
Martín-González N, Hernando-Pérez M, Condezo GN et al (2019) Adenovirus major core protein condenses DNA in clusters and bundles, modulating genome release and capsid internal pressure. Nucleic Acids Res 47:9231–9242
Yao H, Song Y, Chen Y et al (2020) Molecular architecture of the SARS-CoV-2 virus. Cell 183:730-738.e13. https://doi.org/10.1016/j.cell.2020.09.018
Petrov AS, Boz MB, Harvey SC (2007) The conformation of double-stranded DNA inside bacteriophages depends on capsid size and shape. J Struct Biol 160:241–248. https://doi.org/10.1016/j.jsb.2007.08.012
Greber UF, Willetts M, Webster P, Helenius A (1993) Stepwise dismantling of adenovirus 2 during entry into cells. Cell 75:477–486
Zhou H-X, Rivas G, Minton AP (2008) Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys 37:375–397. https://doi.org/10.1146/annurev.biophys.37.032807.125817
Hernando-Pérez M, Lambert S, Nakatani-Webster E et al (2014) Cementing proteins provide extra mechanical stabilization to viral cages. Nat Commun 5:1–8
Ortega-Esteban A, Pérez-Berná AJ, Menéndez-Conejero R et al (2013) Monitoring dynamics of human adenovirus disassembly induced by mechanical fatigue. Sci Rep 3:1434. https://doi.org/10.1038/srep01434
Martín-González N, Delgado-Buscalioni R, de Pablo PJ (2021) Long-range cooperative disassembly and aging during adenovirus uncoating. Phys Rev X 11:021025
Jiménez-Zaragoza M, Yubero MP, Martín-Forero E et al (2018) Biophysical properties of single rotavirus particles account for the functions of protein shells in a multilayered virus. eLife 7:e37295. https://doi.org/10.7554/eLife.37295
O’Neil A, Prevelige PE, Basu G, Douglas T (2012) Coconfinement of fluorescent proteins: spatially enforced communication of GFP and mCherry encapsulated within the P22 capsid. Biomacromol 13:3902–3907. https://doi.org/10.1021/bm301347x
Ortega-Esteban A, Bodensiek K, San Martín C et al (2015) Fluorescence tracking of genome release during mechanical unpacking of single viruses. ACS Nano 9:10571–10579
Strobl K, Selivanovitch E, Ibáñez-Freire P et al (2022) Electromechanical photophysics of GFP packed inside viral protein cages probed by force-fluorescence hybrid single-molecule microscopy. Small 18:2200059. https://doi.org/10.1002/smll.202200059
Baró AM, Miranda R, Alamán J et al (1985) Determination of surface topography of biological specimens at high resolution by scanning tunnelling microscopy. Nature 315:253–254. https://doi.org/10.1038/315253a0
Binnig G, Quate CF, Gerber Ch (1986) Atomic force microscope. Phys Rev Lett 56:930–933. https://doi.org/10.1103/PhysRevLett.56.930
Bustamante C, Vesenka J, Tang CL et al (1992) Circular DNA molecules imaged in air by scanning force microscopy. Biochemistry 31:22–26. https://doi.org/10.1021/bi00116a005
Day J, Kuznetsov YG, Larson SB et al (2001) Biophysical studies on the RNA cores of satellite tobacco mosaic virus. Biophys J 80:2364–2371. https://doi.org/10.1016/S0006-3495(01)76206-6
Drygin YF, Bordunova OA, Gallyamov MO, Yaminsky IV (1998) Atomic force microscopy examination of tobacco mosaic virus and virion RNA. FEBS Lett 425:217–221. https://doi.org/10.1016/S0014-5793(98)00232-4
Alsteens D, Newton R, Schubert R et al (2017) Nanomechanical mapping of first binding steps of a virus to animal cells. Nat Nanotechnol 12:177–183. https://doi.org/10.1038/nnano.2016.228
Valbuena A, Maity S, Mateu MG, Roos WH (2020) Visualization of single molecules building a viral capsid protein lattice through stochastic pathways. ACS Nano 14:8724–8734
Acknowledgements
The authors acknowledge to support by grants received from the Spanish Ministry of Science and Innovation projects (FIS2017-89549-R, FIS2017-90701-REDT and PID2021-126608OB-I00) and the Human Frontiers Science Program (HFSPO RGP0012/2018). IFIMAC is a Center of Excellence “María de Maeztu”. J.R.C. acknowledges the Spanish Ministry of Science and Innovation (PID2020-113287RB-I00) and the Comunidad Autónoma de Madrid (P2018/NMT-4389).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Rodríguez-Espinosa, M.J. et al. (2023). Physical Virology with Atomic Force and Fluorescence Microscopies: Stability, Disassembly and Genome Release. In: Comas-Garcia, M., Rosales-Mendoza, S. (eds) Physical Virology. Springer Series in Biophysics, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-031-36815-8_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-36815-8_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-36814-1
Online ISBN: 978-3-031-36815-8
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)