Skip to main content

Physical Virology with Atomic Force and Fluorescence Microscopies: Stability, Disassembly and Genome Release

  • Chapter
  • First Online:
Physical Virology

Abstract

The core of Atomic Force Microscopy (AFM) is a nanometric tip mounted at the extreme of a microcantilever that scans the surface where the virus particles are adsorbed. Beyond obtaining nanometric resolution of individual viruses in liquid environment, AFM allows the manipulation of single particles, the exploration of virus biomechanics and to monitor assembly/disassembly processes, including genome release in real time. This chapter starts providing some inputs about virus adsorption on surfaces and imaging, including an example of tip dilation artifacts. Later, we exemplify how to monitor the effects of changing the chemical environment of the liquid cell on TGEV coronavirus particles. We go on by describing approaches to study genome release, aging, and multilayered viruses with single indentation and mechanical fatigue assays. The chapter ends explaining an AFM/fluorescence combination to study the influence of crowding on GFP within P22 bacteriophage capsids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Flint SJ, Enquist LW, Racaniello VR, Skalka AM (2004) Principles of virology. ASM Press, Washington D.C.

    Google Scholar 

  2. Douglas T, Young M (1998) Host–guest encapsulation of materials by assembled virus protein cages. Nature 393:152–155. https://doi.org/10.1038/30211

    Article  CAS  Google Scholar 

  3. Mateu MG (2013) Assembly, stability and dynamics of virus capsids. Arch Biochem Biophys 531:65–79. https://doi.org/10.1016/j.abb.2012.10.015

    Article  CAS  PubMed  Google Scholar 

  4. Minton AP (2006) How can biochemical reactions within cells differ from those in test tubes? J Cell Sci 119:2863–2869. https://doi.org/10.1242/jcs.03063

    Article  CAS  PubMed  Google Scholar 

  5. Agirre J, Aloria K, Arizmendi JM et al (2011) Capsid protein identification and analysis of mature Triatoma virus (TrV) virions and naturally occurring empty particles. Virology 409:91–101. https://doi.org/10.1016/j.virol.2010.09.034

    Article  CAS  PubMed  Google Scholar 

  6. Cordova A, Deserno M, Gelbart WM, Ben-Shaul A (2003) Osmotic shock and the strength of viral capsids. Biophys J 85:70–74. https://doi.org/10.1016/S0006-3495(03)74455-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Baker TS, Olson NH, Fuller SD (1999) Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiol Mol Biol Rev. https://doi.org/10.1128/MMBR.63.4.862-922.1999

    Article  PubMed  PubMed Central  Google Scholar 

  8. Egan P, Sinko R, LeDuc PR, Keten S (2015) The role of mechanics in biological and bio-inspired systems. Nat Commun 6:7418. https://doi.org/10.1038/ncomms8418

    Article  PubMed  Google Scholar 

  9. Ivanovska IL, de Pablo PJ, Ibarra B et al (2004) Bacteriophage capsids: tough nanoshells with complex elastic properties. Proc Natl Acad Sci 101:7600–7605. https://doi.org/10.1073/pnas.0308198101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. de Pablo PJ (2018) Atomic force microscopy of virus shells. In: Seminars in cell & developmental biology. Academic Press, pp 199–208

    Google Scholar 

  11. Müller DJ, Amrein M, Engel A (1997) Adsorption of biological molecules to a solid support for scanning probe microscopy. J Struct Biol 119:172–188. https://doi.org/10.1006/jsbi.1997.3875

    Article  PubMed  Google Scholar 

  12. Zeng C, Hernando-Pérez M, Dragnea B et al (2017) Contact mechanics of a small icosahedral virus. Phys Rev Lett 119:038102. https://doi.org/10.1103/PhysRevLett.119.038102

    Article  PubMed  Google Scholar 

  13. Armanious A, Aeppli M, Jacak R et al (2016) Viruses at solid-water interfaces: a systematic assessment of interactions driving adsorption. Environ Sci Technol 50:732–743. https://doi.org/10.1021/acs.est.5b04644

    Article  CAS  PubMed  Google Scholar 

  14. Llauró A, Guerra P, Irigoyen N et al (2014) Mechanical stability and reversible fracture of vault particles. Biophys J 106:687–695. https://doi.org/10.1016/j.bpj.2013.12.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Llauró A, Luque D, Edwards E et al (2016) Cargo–shell and cargo–cargo couplings govern the mechanics of artificially loaded virus-derived cages. Nanoscale 8:9328–9336

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zeng C, Hernando-Perez M, Dragnea B et al (2017) Contact Mechanics of a Small Icosahedral Virus. Phys Rev Lett 119:038102. https://doi.org/10.1103/PhysRevLett.119.038102

    Article  PubMed  Google Scholar 

  17. Carpick RW, Ogletree DF, Salmeron M (1997) Lateral stiffness: A new nanomechanical measurement for the determination of shear strengths with friction force microscopy. Appl Phys Lett 70:1548–1550. https://doi.org/10.1063/1.118639

    Article  CAS  Google Scholar 

  18. Kuznetsov Y, Gershon PD, McPherson A (2008) Atomic force microscopy investigation of vaccinia virus structure. J Virol 82:7551–7566. https://doi.org/10.1128/jvi.00016-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vinckier A, Heyvaert I, D’Hoore A et al (1995) Immobilizing and imaging microtubules by atomic force microscopy. Ultramicroscopy 57:337–343. https://doi.org/10.1016/0304-3991(94)00194-r

    Article  CAS  PubMed  Google Scholar 

  20. Carrasco C, Luque A, Hernando-Pérez M et al (2011) Built-in mechanical stress in viral shells. Biophys J 100:1100–1108. https://doi.org/10.1016/j.bpj.2011.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roos WH (2018) AFM nanoindentation of protein shells, expanding the approach beyond viruses. Semin Cell Dev Biol 73:145–152. https://doi.org/10.1016/j.semcdb.2017.07.044

    Article  CAS  PubMed  Google Scholar 

  22. Ortega-Esteban A, Horcas I, Hernando-Perez M et al (2012) Minimizing tip-sample forces in jumping mode atomic force microscopy in liquid. Ultramicroscopy 114:56–61

    Article  CAS  PubMed  Google Scholar 

  23. Legleiter J, Park M, Cusick B, Kowalewski T (2006) Scanning probe acceleration microscopy (SPAM) in fluids: mapping mechanical properties of surfaces at the nanoscale. Proc Natl Acad Sci 103:4813–4818. https://doi.org/10.1073/pnas.0505628103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Villarrubia JS (1997) Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J Res Natl Inst Stand Technol 102:425–454. https://doi.org/10.6028/jres.102.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Horcas I, Fernández R, Gomez-Rodriguez JM, Colchero JW, Gómez-Herrero JW, Baro AM (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78(1):013705. https://doi.org/10.1063/1.2432410

  26. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  27. Tang J, Olson N, Jardine PJ et al (2008) DNA poised for release in bacteriophage ø29. Structure 16:935–943. https://doi.org/10.1016/j.str.2008.02.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Risco C, Antón IM, Enjuanes L, Carrascosa JL (1996) The transmissible gastroenteritis coronavirus contains a spherical core shell consisting of M and N proteins. J Virol 70:4773–4777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Casanova L, Rutala WA, Weber DJ, Sobsey MD (2009) Survival of surrogate coronaviruses in water. Water Res 43:1893–1898. https://doi.org/10.1016/j.watres.2009.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kiss B, Kis Z, Pályi B, Kellermayer MSZ (2021) Topography, spike dynamics, and nanomechanics of individual native SARS-CoV-2 virions. Nano Lett 21:2675–2680. https://doi.org/10.1021/acs.nanolett.0c04465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Perez-Illana M, Martin-Gonzalez N, Hernando-Perez M et al (2021) Acidification induces condensation of the adenovirus core. Acta Biomater 135:534–542. https://doi.org/10.1016/j.actbio.2021.08.019

    Article  CAS  PubMed  Google Scholar 

  32. Cantero M, Carlero D, Chichón FJ et al (2022) Monitoring SARS-CoV-2 surrogate TGEV individual virions structure survival under harsh physicochemical environments. Cells 11:1759. https://doi.org/10.3390/cells11111759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zink M, Grubmüller H (2009) Mechanical properties of the icosahedral shell of southern bean mosaic virus: a molecular dynamics study. Biophys J 96:1350–1363. https://doi.org/10.1016/j.bpj.2008.11.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ortega-Esteban Á, Mata CP, Rodríguez-Espinosa MJ et al (2020) Cryo-electron microscopy structure, assembly, and mechanics show morphogenesis and evolution of human picobirnavirus. J Virol 94:e01542-e1620. https://doi.org/10.1128/JVI.01542-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Landau Theory of Elasticity - 3rd Edition. https://www.elsevier.com/books/theory-of-elasticity/landau/978-0-08-057069-3?country=ES&format=print&utm_source=google_ads&utm_medium=paid_search&utm_campaign=spainshopping&gclid=CjwKCAiAv9ucBhBXEiwA6N8nYFtCfz0HTtRL1L1syWMEHTtv-UorKaSJ__wX7OwicfFg6RH2LwSclRoCE24QAvD_BwE&gclsrc=aw.ds. Accessed 12 Dec 2022

  36. Katen S, Zlotnick A (2009) The Thermodynamics of virus capsid assembly. Methods Enzymol 455:395–417. https://doi.org/10.1016/S0076-6879(08)04214-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ortega-Esteban A, Condezo GN, Pérez-Berná AJ et al (2015) Mechanics of viral chromatin reveals the pressurization of human adenovirus. ACS Nano 9:10826–10833

    Article  CAS  PubMed  Google Scholar 

  38. Martín-González N, Hernando-Pérez M, Condezo GN et al (2019) Adenovirus major core protein condenses DNA in clusters and bundles, modulating genome release and capsid internal pressure. Nucleic Acids Res 47:9231–9242

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yao H, Song Y, Chen Y et al (2020) Molecular architecture of the SARS-CoV-2 virus. Cell 183:730-738.e13. https://doi.org/10.1016/j.cell.2020.09.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Petrov AS, Boz MB, Harvey SC (2007) The conformation of double-stranded DNA inside bacteriophages depends on capsid size and shape. J Struct Biol 160:241–248. https://doi.org/10.1016/j.jsb.2007.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Greber UF, Willetts M, Webster P, Helenius A (1993) Stepwise dismantling of adenovirus 2 during entry into cells. Cell 75:477–486

    Article  CAS  PubMed  Google Scholar 

  42. Zhou H-X, Rivas G, Minton AP (2008) Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys 37:375–397. https://doi.org/10.1146/annurev.biophys.37.032807.125817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hernando-Pérez M, Lambert S, Nakatani-Webster E et al (2014) Cementing proteins provide extra mechanical stabilization to viral cages. Nat Commun 5:1–8

    Article  Google Scholar 

  44. Ortega-Esteban A, Pérez-Berná AJ, Menéndez-Conejero R et al (2013) Monitoring dynamics of human adenovirus disassembly induced by mechanical fatigue. Sci Rep 3:1434. https://doi.org/10.1038/srep01434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Martín-González N, Delgado-Buscalioni R, de Pablo PJ (2021) Long-range cooperative disassembly and aging during adenovirus uncoating. Phys Rev X 11:021025

    Google Scholar 

  46. Jiménez-Zaragoza M, Yubero MP, Martín-Forero E et al (2018) Biophysical properties of single rotavirus particles account for the functions of protein shells in a multilayered virus. eLife 7:e37295. https://doi.org/10.7554/eLife.37295

  47. O’Neil A, Prevelige PE, Basu G, Douglas T (2012) Coconfinement of fluorescent proteins: spatially enforced communication of GFP and mCherry encapsulated within the P22 capsid. Biomacromol 13:3902–3907. https://doi.org/10.1021/bm301347x

    Article  CAS  Google Scholar 

  48. Ortega-Esteban A, Bodensiek K, San Martín C et al (2015) Fluorescence tracking of genome release during mechanical unpacking of single viruses. ACS Nano 9:10571–10579

    Article  CAS  PubMed  Google Scholar 

  49. Strobl K, Selivanovitch E, Ibáñez-Freire P et al (2022) Electromechanical photophysics of GFP packed inside viral protein cages probed by force-fluorescence hybrid single-molecule microscopy. Small 18:2200059. https://doi.org/10.1002/smll.202200059

    Article  CAS  Google Scholar 

  50. Baró AM, Miranda R, Alamán J et al (1985) Determination of surface topography of biological specimens at high resolution by scanning tunnelling microscopy. Nature 315:253–254. https://doi.org/10.1038/315253a0

    Article  PubMed  Google Scholar 

  51. Binnig G, Quate CF, Gerber Ch (1986) Atomic force microscope. Phys Rev Lett 56:930–933. https://doi.org/10.1103/PhysRevLett.56.930

  52. Bustamante C, Vesenka J, Tang CL et al (1992) Circular DNA molecules imaged in air by scanning force microscopy. Biochemistry 31:22–26. https://doi.org/10.1021/bi00116a005

    Article  CAS  PubMed  Google Scholar 

  53. Day J, Kuznetsov YG, Larson SB et al (2001) Biophysical studies on the RNA cores of satellite tobacco mosaic virus. Biophys J 80:2364–2371. https://doi.org/10.1016/S0006-3495(01)76206-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Drygin YF, Bordunova OA, Gallyamov MO, Yaminsky IV (1998) Atomic force microscopy examination of tobacco mosaic virus and virion RNA. FEBS Lett 425:217–221. https://doi.org/10.1016/S0014-5793(98)00232-4

    Article  CAS  PubMed  Google Scholar 

  55. Alsteens D, Newton R, Schubert R et al (2017) Nanomechanical mapping of first binding steps of a virus to animal cells. Nat Nanotechnol 12:177–183. https://doi.org/10.1038/nnano.2016.228

    Article  CAS  PubMed  Google Scholar 

  56. Valbuena A, Maity S, Mateu MG, Roos WH (2020) Visualization of single molecules building a viral capsid protein lattice through stochastic pathways. ACS Nano 14:8724–8734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge to support by grants received from the Spanish Ministry of Science and Innovation projects (FIS2017-89549-R, FIS2017-90701-REDT and PID2021-126608OB-I00) and the Human Frontiers Science Program (HFSPO RGP0012/2018). IFIMAC is a Center of Excellence “María de Maeztu”. J.R.C. acknowledges the Spanish Ministry of Science and Innovation (PID2020-113287RB-I00) and the Comunidad Autónoma de Madrid (P2018/NMT-4389).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro José de Pablo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodríguez-Espinosa, M.J. et al. (2023). Physical Virology with Atomic Force and Fluorescence Microscopies: Stability, Disassembly and Genome Release. In: Comas-Garcia, M., Rosales-Mendoza, S. (eds) Physical Virology. Springer Series in Biophysics, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-031-36815-8_10

Download citation

Publish with us

Policies and ethics