Skip to main content

Wavelength Computation from RGB

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 (ICCSA 2023)

Abstract

Conversion RGB to wavelength is not a simple problem. This contribution describes a simple method for wavelength extraction for colors given by the RGB triplet. The method is simple and accurate, based on known RGB values of the rainbow. It also respects different saturation of a color.

Supported by the University of West Bohemia (UWB) - Institutional research.

T. C. L. Bellot and X. Berault—Students of the Erasmus ACG course at UWB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The RBG spectral values for iso-energetic white color are specified in Table 3 [7].

  2. 2.

    Details on projective geometric algebra use can be found in [12,13,14] and intersection computation in [15].

  3. 3.

    A value (XY) in Euclidean space can be expressed as \([wx,wy:w]^T\) in the projective space & \(w \ne 0\); \(w=1\) is used in this case [13].

  4. 4.

    \(\xi =100\) means 100 sub-intervals on the x, resp. y axis.

  5. 5.

    (Responsibilities: Skala, V.: theory, algorithm design, algorithm implementation design, manuscript preparation; Bellot, T.C.L., Berault, X.: implementation and experimental verification).

References

  1. Burger, W., Burge, M.J.: Digital Image Processing: An Algorithmic Introduction Using Java, 2nd edn. Springer, London (2016). https://doi.org/10.1007/978-1-4471-6684-9

    Book  Google Scholar 

  2. Faugeras, O., Luong, Q.-T., Papadopoulou, T.: The Geometry of Multiple Images: The Laws That Govern The Formation of Images of A Scene and Some of Their Applications. MIT Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  3. Giorgianni, E.J., Madden, T.E.: Digital Color Management: Encoding Solutions. Addison-Wesley Longman Publishing Co., Inc., Boston (1998)

    Google Scholar 

  4. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall Inc., Hoboken (2006)

    Google Scholar 

  5. Hall, R.: Illumination and Color in Computer Generated Imagery. Springer, Heidelberg (1988). https://doi.org/10.1007/978-1-4612-3526-2

    Book  Google Scholar 

  6. Hoffmann, M.: Digital signal processing mathematics. CAS - CERN Accelerator School: Course on Digital Signal Processing (2008)

    Google Scholar 

  7. Hornak, P.: Svetelna technika (Lighting technology). Alfa, Slovakia (1989)

    Google Scholar 

  8. Hrdina, J., Vašík, P., Matoušek, R., Návrat, A.: Geometric algebras for uniform colour spaces. Math. Methods Appl. Sci. 41(11), 4117–4130 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jackson, R., MacDonald, L., Freeman, K.: Computer Generated Color: A Practical Guide to Presentation and Display. Wiley, Hoboken (1994)

    MATH  Google Scholar 

  10. Nassau, K. (ed.): Color for Science, Art and Technology, 1st edn. North Holland, Amsterdam (1998)

    Google Scholar 

  11. Ohta, N., Robertson, A.R.: Colorimetry: Fundamentals and Applications. Wiley, Hoboken (2006)

    Google Scholar 

  12. Skala, V.: Length, area and volume computation in homogeneous coordinates. Int. J. Image Graph. 6(4), 625–639 (2006)

    Article  Google Scholar 

  13. Skala, V.: Barycentric coordinates computation in homogeneous coordinates. Comput. Graph. 32(1), 120–127 (2008)

    Article  Google Scholar 

  14. Skala, V.: Intersection computation in projective space using homogeneous coordinates. Int. J. Image Graph. 8(4), 615–628 (2008)

    Article  Google Scholar 

  15. Skala, V.: A brief survey of clipping and intersection algorithms with a list of references. Informatica 34(1), 169–198 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wikipedia contributors. CIE 1931 color space – Wikipedia, the free encyclopedia (2023). Accessed 9 Feb 2023

    Google Scholar 

Download references

Acknowledgments

The author thanks to colleagues and colleagues at the Shandong University(Jinan) China, and University of West Bohemia (Pilsen) for their critical comments. Thanks belong also to anonymous reviewers, as their comments and hints helped to improve this paper significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaclav Skala .

Editor information

Editors and Affiliations

RGB Trichromatic Coefficients

RGB Trichromatic Coefficients

To avoid numerical instability in Eq. 1 \(r=0.00001\) was set for \(\lambda =780\)[nm].

Table 3. RGB spectral trichromatic values.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Skala, V., Bellot, T.C.L., Berault, X. (2023). Wavelength Computation from RGB. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023. ICCSA 2023. Lecture Notes in Computer Science, vol 13957. Springer, Cham. https://doi.org/10.1007/978-3-031-36808-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36808-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36807-3

  • Online ISBN: 978-3-031-36808-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics