Skip to main content

Prediction of Urban Population-Facilities Interactions with Graph Neural Network

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 (ICCSA 2023)

Abstract

The urban population interacts with service facilities on a daily basis. The information on population-facilities interactions is considered when analyzing the current city organization and revealing gaps in infrastructure at the neighborhood level. However, often this information is limited to several observation areas. The paper presents a new graph-based deep learning approach to reconstruct population-facilities interactions. In the proposed approach, graph attention neural networks learn latent nodes’ representation and discover interpretable dependencies in a graph of interactions based on observed data of one part of the city. A novel normalization technique is used to balance doubly-constrained flows between two locations. The experiments show that the proposed approach outperforms classic models in a bipartite graph of population-facilities interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In Russian regions, social facilities, such as kindergartens, are usually built on standard projects determining maximum capacity.

  2. 2.

    https://epivec.github.io/TDLM/.

References

  1. 2GIS. City information service. www.2gis.ru

  2. Google Maps. Satellite image. https://www.google.com.sg/maps/

  3. Map data from OpenStreetMap. https://www.openstreetmap.org/copyright

  4. Rosstat. https://rosstat.gov.ru/

  5. Ashik, F.R., Mim, S.A., Neema, M.N.: Towards vertical spatial equity of urban facilities: An integration of spatial and aspatial accessibility. J. Urban Manag. 9(1), 77–92 (2020)

    Article  Google Scholar 

  6. Barbosa, H., et al.: Human mobility: Models and applications. Phys. Rep. 734, 1–74 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benamira, A., Devillers, B., Lesot, E., Ray, A.K., Saadi, M., Malliaros, F.D.: Semi-supervised learning and graph neural networks for fake news detection. In: Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 568–569 (2019)

    Google Scholar 

  8. Calabrese, F., Di Lorenzo, G., Ratti, C.: Human mobility prediction based on individual and collective geographical preferences. In: 13th International IEEE Conference On Intelligent Transportation Systems, pp. 312–317. IEEE (2010)

    Google Scholar 

  9. Dadashpoor, H., Rostami, F., Alizadeh, B.: Is inequality in the distribution of urban facilities inequitable? exploring a method for identifying spatial inequity in an iranian city. Cities 52, 159–172 (2016)

    Article  Google Scholar 

  10. Deming, W.E., Stephan, F.F.: On a least squares adjustment of a sampled frequency table when the expected marginal totals are known. Ann. Math. Stat. 11(4), 427–444 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  11. Doosti, B., Naha, S., Mirbagheri, M., Crandall, D.J.: Hope-net: A graph-based model for hand-object pose estimation. In: Proceedings of the IEEE/CVF Conference On Computer Vision And Pattern Recognition, pp. 6608–6617 (2020)

    Google Scholar 

  12. Eremin, R.A., Humonen, I.S., Zolotarev, P.N., Medrish, I.V., Zhukov, L.E., Budennyy, S.A.: Hybrid dft/data-driven approach for searching for new quasicrystal approximants in sc-x (x= rh, pd, ir, pt) systems. Crystal Growth Design 22(7), 4570–4581 (2022)

    Article  Google Scholar 

  13. Fan, C., Jiang, X., Lee, R., Mostafavi, A.: Equality of access and resilience in urban population-facility networks. npj Urban Sustainability 2(1), 9 (2022)

    Google Scholar 

  14. Fang, X., Huang, J., Wang, F., Zeng, L., Liang, H., Wang, H.: Constgat: Contextual spatial-temporal graph attention network for travel time estimation at baidu maps. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2697–2705 (2020)

    Google Scholar 

  15. Farahani, R.Z., Fallah, S., Ruiz, R., Hosseini, S., Asgari, N.: Or models in urban service facility location: A critical review of applications and future developments. Eur. J. Oper. Res. 276(1), 1–27 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ferrer, A.L.C., Thome, A.M.T., Scavarda, A.J.: Sustainable urban infrastructure: A review. Resour. Conserv. Recycl. 128, 360–372 (2018)

    Article  Google Scholar 

  17. Grauwin, S., et al.: Identifying and modeling the structural discontinuities of human interactions. Sci. Rep. 7(1), 46677 (2017)

    Article  Google Scholar 

  18. Griffith, D.A., Fischer, M.M.: Constrained variants of the gravity model and spatial dependence: model specification and estimation issues. Springer (2016). https://doi.org/10.1007/978-3-319-30196-9_3

  19. Hsu, C., Fan, C., Mostafavi, A.: Limitations of gravity models in predicting fine-scale spatial-temporal urban mobility networks. arXiv preprint arXiv:2109.03873 (2021)

  20. Kontsevik, G., Sokol, A., Bogomolov, Y., Evstigneev, V.P., Mityagin, S.A.: Modeling the citizens’ settlement in residential buildings. Procedia Comput. Sci. 212, 51–63 (2022)

    Article  Google Scholar 

  21. Lenormand, M., Bassolas, A., Ramasco, J.J.: Systematic comparison of trip distribution laws and models. J. Transp. Geogr. 51, 158–169 (2016)

    Article  Google Scholar 

  22. Li, Z., Ren, T., Ma, X., Liu, S., Zhang, Y., Zhou, T.: Identifying influential spreaders by gravity model. Sci. Rep. 9(1), 8387 (2019)

    Article  Google Scholar 

  23. Mishina, M., Khrulkov, A., Solovieva, V., Tupikina, L., Mityagin, S.: Method of intermodal accessibility graph construction. Proc. Comput. Sci. 212, 42–50 (2022)

    Article  Google Scholar 

  24. Oshan, T.M.: A primer for working with the spatial interaction modeling (spint) module in the python spatial analysis library (pysal). Region 3(2), R11–R23 (2016)

    Article  Google Scholar 

  25. Peregrino, A.A., Pradhan, S., Liu, Z., Ferreira, N., Miranda, F.: Transportation scenario planning with graph neural networks. arXiv preprint arXiv:2110.13202 (2021)

  26. Robinson, C., Dilkina, B.: A machine learning approach to modeling human migration. In: Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies, pp. 1–8 (2018)

    Google Scholar 

  27. Schläpfer, M., et al.: The universal visitation law of human mobility. Nature 593(7860), 522–527 (2021)

    Article  Google Scholar 

  28. Simini, F., Barlacchi, G., Luca, M., Pappalardo, L.: A deep gravity model for mobility flows generation. Nat. Commun. 12(1), 6576 (2021)

    Article  Google Scholar 

  29. Simini, F., González, M.C., Maritan, A., Barabási, A.L.: A universal model for mobility and migration patterns. Nature 484(7392), 96–100 (2012)

    Article  Google Scholar 

  30. Temeljotov Salaj, A., Lindkvist, C.M.: Urban facility management. Facilities 39(7/8), 525–537 (2021)

    Article  Google Scholar 

  31. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  32. Wang, X., He, X., Cao, Y., Liu, M., Chua, T.S.: Kgat: Knowledge graph attention network for recommendation. In: Proceedings of the 25th ACM SIGKDD International Conference On Knowledge Discovery & Data Mining, pp. 950–958 (2019)

    Google Scholar 

  33. Zipf, G.K.: The p 1 p 2/d hypothesis: on the intercity movement of persons. Am. Sociol. Rev. 11(6), 677–686 (1946)

    Article  Google Scholar 

Download references

Acknowledgments

This research is financially supported by the Russian Science Foundation, Agreement 17-71-30029 (https://rscf.ru/en/project/17-71-30029/), with co-financing of Bank Saint-Petersburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Mishina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mishina, M. et al. (2023). Prediction of Urban Population-Facilities Interactions with Graph Neural Network. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023. ICCSA 2023. Lecture Notes in Computer Science, vol 13956 . Springer, Cham. https://doi.org/10.1007/978-3-031-36805-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36805-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36804-2

  • Online ISBN: 978-3-031-36805-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics