Skip to main content

Cytokines, Chemokines, Inflammasomes, Myokines and Complement-Related Factors in Acute Kidney Injury

  • Chapter
  • First Online:
Organ Crosstalk in Acute Kidney Injury

Abstract

In this chapter we summarize a number of details about the inflammatory response that occurs within the kidney following typical causes of acute kidney injury. The aforementioned inflammatory response includes the release of cytokines, chemokines, and myokines. It is crucial to understand the molecular signals released by necrotic cells, which result in the activation of the inflammasome. The inflammasome is a multi-protein complex expressed in various cells, including epithelial and endothelial cells, dendritic cells, monocytes/macrophages, and lymphocytes. In addition, the expression of proinflammatory proteins such as complement proteins mediated by resident and recruited cell populations is an important determinant of the phases of cell injury and together are key triggers of inflammation after acute tissue injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Radi ZA. Immunopathogenesis of acute kidney injury. Toxicol Pathol. 2018;46(8):930–43.

    Article  CAS  PubMed  Google Scholar 

  2. Akcay A, Nguyen Q, Edelstein CL. Mediators of inflammation in acute kidney injury. Mediat Inflamm. 2009;2009:1–12.

    Article  Google Scholar 

  3. Ortega L. Role of cytokines in the pathogenesis of acute and chronic kidney disease, glomerulonephritis, and end-stage kidney disease. Int J Interferon Cytokine Mediat Res. 2010;2:49–62.

    Article  Google Scholar 

  4. Scheer JM. Chapter 505 - Caspase-1. In: Rawlings ND, Salvesen G, editors. Handbook of proteolytic enzymes. 3rd ed. San Diego, CA: Academic Press; 2013. p. 2237–43. https://www.sciencedirect.com/science/article/pii/B9780123822192005032.

    Chapter  Google Scholar 

  5. Hirooka Y, Nozaki Y. Interleukin-18 in inflammatory kidney disease. Front Med. 2021;8:639103.

    Article  Google Scholar 

  6. Lin TY, Hsu YH. IL-20 in acute kidney injury: role in pathogenesis and potential as a therapeutic target. Int J Mol Sci. 2020;21(3):1009. https://doi.org/10.3390/ijms21031009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kadiroglu AK, Sit D, Atay AE, Kayabasi H, Altintas A, Yilmaz ME. The evaluation of effects of demographic features, biochemical parameters, and cytokines on clinical outcomes in patients with acute renal failure. Ren Fail. 2007;29(4):503–8.

    Article  CAS  PubMed  Google Scholar 

  8. Al-Lamki RS, Mayadas TN. TNF receptors: signaling pathways and contribution to renal dysfunction. Kidney Int. 2015;87(2):281–96.

    Article  CAS  PubMed  Google Scholar 

  9. Sabio G, Davis RJ. TNF and MAP kinase signalling pathways. Semin Immunol. 2014;26(3):237–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gupta J, Mitra N, Kanetsky PA, Devaney J, Wing MR, Reilly M, et al. Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC. Clin J Am Soc Nephrol. 2012;7(12):1938–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Peralta Soler A, Mullin JM, Knudsen KA, Marano CW. Tissue remodeling during tumor necrosis factor-induced apoptosis in LLC-PK1 renal epithelial cells. Am J Phys. 1996;270(5 Pt 2):F869–79.

    CAS  Google Scholar 

  12. Guo YL, Baysal K, Kang B, Yang LJ, Williamson JR. Correlation between sustained c-Jun N-terminal protein kinase activation and apoptosis induced by tumor necrosis factor-alpha in rat mesangial cells. J Biol Chem. 1998;273(7):4027–34.

    Article  CAS  PubMed  Google Scholar 

  13. Meldrum KK, Meldrum DR, Hile KL, Yerkes EB, Ayala A, Cain MP, et al. p38 MAPK mediates renal tubular cell TNF-alpha production and TNF-alpha-dependent apoptosis during simulated ischemia. Am J Physiol Cell Physiol. 2001;281(2):C563–70.

    Article  CAS  PubMed  Google Scholar 

  14. Ramseyer VD. Tumor necrosis factor-α: regulation of renal function and blood pressure. Am J Physiol Ren Physiol. 2013;304(10):F1231–42.

    Article  CAS  Google Scholar 

  15. Xu C, Chang A, Hack BK, Eadon MT, Alper SL, Cunningham PN. TNF-mediated damage to glomerular endothelium is an important determinant of acute kidney injury in sepsis. Kidney Int. 2014;85(1):72–81.

    Article  CAS  PubMed  Google Scholar 

  16. Jaber B. Cytokine gene promoter polymorphisms and mortality in acute renal failure. Cytokine. 2004;25(5):212–9.

    Article  CAS  PubMed  Google Scholar 

  17. Susantitaphong P, Perianayagam MC, Tighiouart H, Liangos O, Bonventre JV, Jaber BL. Tumor necrosis factor alpha promoter polymorphism and severity of acute kidney injury. Nephron Clin Pract. 2013;123(1–2):67–73.

    Article  CAS  PubMed  Google Scholar 

  18. Cantero-Navarro E, Rayego-Mateos S, Orejudo M, Tejedor-Santamaria L, Tejera-Muñoz A, Sanz AB, et al. Role of macrophages and related cytokines in kidney disease. Front Med. 2021;8:688060.

    Article  Google Scholar 

  19. Han HI, Skvarca LB, Espiritu EB, Davidson AJ, Hukriede NA. The role of macrophages during acute kidney injury: destruction and repair. Pediatr Nephrol. 2019;34(4):561–9.

    Article  PubMed  Google Scholar 

  20. Kitching AR, Holdsworth SR, Tipping PG. IFN-gamma mediates crescent formation and cell-mediated immune injury in murine glomerulonephritis. J Am Soc Nephrol. 1999;10(4):752–9.

    Article  CAS  PubMed  Google Scholar 

  21. Takei Y, Sims TN, Urmson J, Halloran PF. Central role for interferon-gamma receptor in the regulation of renal MHC expression. J Am Soc Nephrol. 2000;11(2):250–61.

    Article  CAS  PubMed  Google Scholar 

  22. Kassianos AJ, Wang X, Sampangi S, Afrin S, Wilkinson R, Healy H. Fractalkine-CX3CR1-dependent recruitment and retention of human CD1c+ myeloid dendritic cells by in vitro-activated proximal tubular epithelial cells. Kidney Int. 2015;87(6):1153–63.

    Article  CAS  PubMed  Google Scholar 

  23. Law BMP, Wilkinson R, Wang X, Kildey K, Lindner M, Rist MJ, et al. Interferon-γ production by tubulointerstitial human CD56bright natural killer cells contributes to renal fibrosis and chronic kidney disease progression. Kidney Int. 2017;92(1):79–88.

    Article  CAS  PubMed  Google Scholar 

  24. Gewin LS. Transforming growth factor-β in the acute kidney injury to chronic kidney disease transition. Nephron. 2019;143(3):154–7.

    Article  CAS  PubMed  Google Scholar 

  25. Chung S, Overstreet JM, Li Y, Wang Y, Niu A, Wang S, et al. TGF-β promotes fibrosis after severe acute kidney injury by enhancing renal macrophage infiltration. JCI Insight. 2018;3(21):e123563.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Otto G. IL-1β switches on kidney fibrosis. Nat Rev Nephrol. 2018;14(8):475.

    Article  PubMed  Google Scholar 

  27. Bonnemaison ML, Marks ES, Boesen EI. Interleukin-1β as a driver of renal NGAL production. Cytokine. 2017;91:38–43.

    Article  CAS  PubMed  Google Scholar 

  28. Konno T, Nakano R, Mamiya R, Tsuchiya H, Kitanaka T, Namba S, et al. Expression and function of interleukin-1β-induced neutrophil gelatinase-associated Lipocalin in renal tubular cells. PLoS One. 2016;11(11):e0166707.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dellepiane S, Leventhal JS, Cravedi P. T cells and acute kidney injury: a two-way relationship. Front Immunol. 2020;11:1546. https://doi.org/10.3389/fimmu.2020.01546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Moledina DG, Mansour SG, Jia Y, Obeid W, Thiessen-Philbrook H, Koyner JL, et al. Association of T cell–derived inflammatory cytokines with acute kidney injury and mortality after cardiac surgery. Kidney Int Rep. 2019;4(12):1689–97.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Medeiros T, Guimarães GMC, Carvalho FR, Alves LS, Faustino R, Campi-Azevedo AC, et al. Acute kidney injury associated to COVID-19 leads to a strong unbalance of circulant immune mediators. Cytokine. 2022;157:155974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang WR, Garg AX, Coca SG, Devereaux PJ, Eikelboom J, Kavsak P, et al. Plasma IL-6 and IL-10 concentrations predict AKI and long-term mortality in adults after cardiac surgery. J Am Soc Nephrol. 2015;26(12):3123–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shimazui T, Nakada T, Tateishi Y, Oshima T, Aizimu T, Oda S. Association between serum levels of interleukin-6 on ICU admission and subsequent outcomes in critically ill patients with acute kidney injury. BMC Nephrol. 2019;20(1):74. https://doi.org/10.1186/s12882-019-1265-6.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ruef C, Budde K, Lacy J, Northemann W, Baumann M, Sterzel RB, et al. Interleukin 6 is an autocrine growth factor for mesangial cells. Kidney Int. 1990;38(2):249–57.

    Article  CAS  PubMed  Google Scholar 

  35. Coletta I, Soldo L, Polentarutti N, Mancini F, Guglielmotti A, Pinza M, et al. Selective induction of MCP-1 in human mesangial cells by the IL-6/sIL-6R complex. Exp Nephrol. 2000;8(1):37–43.

    Article  CAS  PubMed  Google Scholar 

  36. Kim DI, Park SH. Sequential signaling cascade of IL-6 and PGC-1α is involved in high glucose-induced podocyte loss and growth arrest. Biochem Biophys Res Commun. 2013;435(4):702–7.

    Article  CAS  PubMed  Google Scholar 

  37. Nechemia-Arbely Y, Barkan D, Pizov G, Shriki A, Rose-John S, Galun E, et al. IL-6/IL-6R axis plays a critical role in acute kidney injury. J Am Soc Nephrol. 2008;19(6):1106–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Skrypnyk NI, Gist KM, Okamura K, Montford JR, You Z, Yang H, et al. IL-6-mediated hepatocyte production is the primary source of plasma and urine neutrophil gelatinase–associated lipocalin during acute kidney injury. Kidney Int. 2020;97(5):966–79.

    Article  CAS  PubMed  Google Scholar 

  39. Dennen P, Altmann C, Kaufman J, Klein CL, Andres-Hernando A, Ahuja NH, et al. Urine interleukin-6 is an early biomarker of acute kidney injury in children undergoing cardiac surgery. Crit Care. 2010;14(5):R181.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Edelstein CL. Biomarkers of acute kidney injury. Adv Chronic Kidney Dis. 2008;15(3):222–34.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Melnikov VY, Ecder T, Fantuzzi G, Siegmund B, Lucia MS, Dinarello CA, et al. Impaired IL-18 processing protects caspase-1-deficient mice from ischemic acute renal failure. J Clin Invest. 2001;107(9):1145–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Faubel S, Lewis EC, Reznikov L, Ljubanovic D, Hoke TS, Somerset H, et al. Cisplatin-induced acute renal failure is associated with an increase in the cytokines interleukin (IL)-1beta, IL-18, IL-6, and neutrophil infiltration in the kidney. J Pharmacol Exp Ther. 2007;322(1):8–15.

    Article  CAS  PubMed  Google Scholar 

  43. Wegenka UM. IL-20: biological functions mediated through two types of receptor complexes. Cytokine Growth Factor Rev. 2010;21(5):353–63.

    Article  CAS  PubMed  Google Scholar 

  44. Li HH, Hsu YH, Wei CC, Lee PT, Chen WC, Chang MS. Interleukin-20 induced cell death in renal epithelial cells and was associated with acute renal failure. Genes Immun. 2008;9(5):395–404.

    Article  CAS  PubMed  Google Scholar 

  45. Chang MS, Hsu YH. The role of IL-20 in chronic kidney disease and diabetic nephropathy: pathogenic and therapeutic implications. J Leukoc Biol. 2018;104(5):919–23.

    Article  CAS  PubMed  Google Scholar 

  46. Lee SA, Noel S, Sadasivam M, Hamad ARA, Rabb H. Role of immune cells in acute kidney injury and repair. Nephron. 2017;137(4):282–6.

    Article  CAS  PubMed  Google Scholar 

  47. Wang Y, Chang J, Yao B, Niu A, Kelly E, Breeggemann MC, et al. Proximal tubule-derived colony stimulating factor-1 mediates polarization of renal macrophages and dendritic cells, and recovery in acute kidney injury. Kidney Int. 2015;88(6):1274–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang MZ, Yao B, Yang S, Jiang L, Wang S, Fan X, et al. CSF-1 signaling mediates recovery from acute kidney injury. J Clin Invest. 2012;122(12):4519–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jung M, Sola A, Hughes J, Kluth DC, Vinuesa E, Viñas JL, et al. Infusion of IL-10-expressing cells protects against renal ischemia through induction of lipocalin-2. Kidney Int. 2012;81(10):969–82.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang MZ, Wang X, Wang Y, Niu A, Wang S, Zou C, et al. IL-4/IL-13-mediated polarization of renal macrophages/dendritic cells to an M2a phenotype is essential for recovery from acute kidney injury. Kidney Int. 2017;91(2):375–86.

    Article  CAS  PubMed  Google Scholar 

  51. Mylonas KJ, Anderson J, Sheldrake TA, Hesketh EE, Richards JA, Ferenbach DA, et al. Granulocyte macrophage-colony stimulating factor: a key modulator of renal mononuclear phagocyte plasticity. Immunobiology. 2019;224(1):60–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chung ACK, Lan HY. Chemokines in renal injury. J Am Soc Nephrol. 2011;22(5):802–9.

    Article  CAS  PubMed  Google Scholar 

  53. Furuichi K, Kaneko S, Wada T. Chemokine/chemokine receptor-mediated inflammation regulates pathologic changes from acute kidney injury to chronic kidney disease. Clin Exp Nephrol. 2009;13(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  54. Holdsworth SR, Tipping PG. Leukocytes in glomerular injury. Semin Immunopathol. 2007;29(4):355–74.

    Article  PubMed  Google Scholar 

  55. Gao J, Wu L, Wang S, Chen X. Role of chemokine (C–X–C motif) ligand 10 (CXCL10) in renal diseases. Mediat Inflamm. 2020;2020:e6194864.

    Article  Google Scholar 

  56. Segerer S, Nelson PJ, Schlöndorff D. Chemokines, chemokine receptors, and renal disease: from basic science to pathophysiologic and therapeutic studies. J Am Soc Nephrol. 2000;11(1):152–76.

    Article  CAS  PubMed  Google Scholar 

  57. Thurman JM, Lenderink AM, Royer PA, Coleman KE, Zhou J, Lambris JD, et al. C3a is required for the production of CXC chemokines by tubular epithelial cells after renal Ishemia/reperfusion. J Immunol. 2007;178(3):1819–28.

    Article  CAS  PubMed  Google Scholar 

  58. Zhou Y, Xu W, Zhu H. CXCL8(3–72) K11R/G31P protects against sepsis-induced acute kidney injury via NF-κB and JAK2/STAT3 pathway. Biol Res. 2019;52:29. https://doi.org/10.1186/s40659-019-0236-5.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yu C, Qi D, Sun JF, Li P, Fan HY. Rhein prevents endotoxin-induced acute kidney injury by inhibiting NF-κB activities. Sci Rep. 2015;5:11822.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Liu P, Li X, Lv W, Xu Z. Inhibition of CXCL1-CXCR2 axis ameliorates cisplatin-induced acute kidney injury by mediating inflammatory response. Biomed Pharmacother. 2020;122:109693.

    Article  CAS  PubMed  Google Scholar 

  61. Liang H, Zhang Z, He L, Wang Y. CXCL16 regulates cisplatin-induced acute kidney injury. Oncotarget. 2016;7(22):31652–62.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chen G, Lin SC, Chen J, He L, Dong F, Xu J, et al. CXCL16 recruits bone marrow-derived fibroblast precursors in renal fibrosis. J Am Soc Nephrol. 2011;22(10):1876–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xia Y, Entman ML, Wang Y. Critical role of CXCL16 in hypertensive kidney injury and fibrosis. Hypertens Dallas Tex 1979. 2013;62(6):1129–37.

    CAS  Google Scholar 

  64. Erez DL, Denburg MR, Afolayan S, Jodele S, Wallace G, Davies SM, et al. Acute kidney injury in children after hematopoietic cell transplantation is associated with elevated urine CXCL10 and CXCL9. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2020;26(7):1266–72.

    Article  CAS  Google Scholar 

  65. Erez DL, Sullivan KE, Denburg M, Bunin NJ, Jodele S, Afolayan S, et al. Urinary CXCL10 and CXCL9 are associated with acute kidney injury in children after hematopoietic stem cell transplantation: results of a discovery and validation cohort. Biol Blood Marrow Transplant. 2019;25(3, Supplement):S185–6.

    Article  Google Scholar 

  66. Aouad Y, Pizarro MS, Fernández-Fernández B, Ramos AM, Ortiz A. Inflamación renal en el trasplante: ¿existen biomarcadores? Nefrol Engl Ed. 2016;7:14–21.

    Google Scholar 

  67. Zhuang Q, Cheng K, Ming Y. CX3CL1/CX3CR1 Axis, as the therapeutic potential in renal diseases: friend or foe? Curr Gene Ther. 2017;17(6):442–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Oh DJ, Dursun B, He Z, Lu L, Hoke TS, Ljubanovic D, et al. Fractalkine receptor (CX3CR1) inhibition is protective against ischemic acute renal failure in mice. Am J Physiol-Ren Physiol. 2008;294(1):F264–71.

    Article  CAS  Google Scholar 

  69. Cockwell P, Chakravorty SJ, Girdlestone J, Savage COS. Fractalkine expression in human renal inflammation. J Pathol. 2002;196(1):85–90.

    Article  CAS  PubMed  Google Scholar 

  70. Lu LH, Oh DJ, Dursun B, He Z, Hoke TS, Faubel S, et al. Increased macrophage infiltration and fractalkine expression in cisplatin-induced acute renal failure in mice. J Pharmacol Exp Ther. 2008;324(1):111–7.

    Article  CAS  PubMed  Google Scholar 

  71. Roche JK, Keepers TR, Gross LK, Seaner RM, Obrig TG. CXCL1/KC and CXCL2/MIP-2 are critical effectors and potential targets for therapy of Escherichia coli O157:H7-associated renal inflammation. Am J Pathol. 2007;170(2):526–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. De Filippo K, Dudeck A, Hasenberg M, Nye E, van Rooijen N, Hartmann K, et al. Mast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammation. Blood. 2013;121(24):4930–7.

    Article  PubMed  Google Scholar 

  73. Li L, Huang L, Sung SSJ, Vergis AL, Rosin DL, Rose CE, et al. The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia–reperfusion injury. Kidney Int. 2008;74(12):1526–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Okusa MD, Linden J, Huang L, Rieger JM, Macdonald TL, Huynh LP. A2A adenosine receptor-mediated inhibition of renal injury and neutrophil adhesion. Am J Physiol-Ren Physiol. 2000;279(5):F809–18.

    Article  CAS  Google Scholar 

  75. Li L, Okusa MD. Blocking the immune response in ischemic acute kidney injury: the role of adenosine 2A agonists. Nat Clin Pract Nephrol. 2006;2(8):432–44.

    Article  CAS  PubMed  Google Scholar 

  76. Jang HR, Rabb H. The innate immune response in ischemic acute kidney injury. Clin Immunol. 2009;130(1):41–50.

    Article  CAS  PubMed  Google Scholar 

  77. Bolisetty S, Agarwal A. Neutrophils in acute kidney injury: not neutral any more. Kidney Int. 2009;75(7):674–6.

    Article  CAS  PubMed  Google Scholar 

  78. Munshi R, Johnson A, Siew ED, Ikizler TA, Ware LB, Wurfel MM, et al. MCP-1 gene activation marks acute kidney injury. J Am Soc Nephrol. 2011;22(1):165–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Moledina DG, Isguven S, McArthur E, Thiessen-Philbrook H, Garg AX, Shlipak M, et al. Plasma monocyte chemotactic protein-1 is associated with acute kidney injury and death after cardiac operations. Ann Thorac Surg. 2017;104(2):613–20.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Jung YJ, Lee AS, Nguyen-Thanh T, Kim D, Kang KP, Lee S, et al. SIRT2 regulates LPS-induced renal tubular CXCL2 and CCL2 expression. J Am Soc Nephrol. 2015;26(7):1549–60.

    Article  CAS  PubMed  Google Scholar 

  81. Hoste E, Bihorac A, Al-Khafaji A, Ortega LM, Ostermann M, Haase M, et al. Identification and validation of biomarkers of persistent acute kidney injury: the RUBY study. Intensive Care Med. 2020;46(5):943–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bagshaw SM, Al-Khafaji A, Artigas A, Davison D, Haase M, Lissauer M, et al. External validation of urinary C-C motif chemokine ligand 14 (CCL14) for prediction of persistent acute kidney injury. Crit Care. 2021;25(1):185. https://doi.org/10.1186/s13054-021-03618-1.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med. 2006;354(6):610–21.

    Article  CAS  PubMed  Google Scholar 

  84. Yu TM, Palanisamy K, Sun KT, Day YJ, Shu KH, Wang IK, et al. RANTES mediates kidney ischemia reperfusion injury through a possible role of HIF-1α and LncRNA PRINS. Sci Rep. 2016;6:18424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell. 2014;157(5):1013–22.

    Article  CAS  PubMed  Google Scholar 

  86. Shahzad K, Bock F, Dong W, Wang H, Kopf S, Kohli S, et al. Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney Int. 2015;87(1):74–84.

    Article  CAS  PubMed  Google Scholar 

  87. Soares JLS, Fernandes FP, Patente TA, Monteiro MB, Parisi MC, Giannella-Neto D, et al. Gain-of-function variants in NLRP1 protect against the development of diabetic kidney disease: NLRP1 inflammasome role in metabolic stress sensing? Clin Immunol. 2018;187:46–9.

    Article  CAS  PubMed  Google Scholar 

  88. Cheng CH, Lee YS, Chang CJ, Lin JC, Lin TY. Genetic polymorphisms in inflammasome-dependent innate immunity among pediatric patients with severe renal parenchymal infections. PLoS One. 2015;10(10):e0140128.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Rathinam VAK, Chan FKM. Inflammasome, inflammation, and tissue homeostasis. Trends Mol Med. 2018;24(3):304–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Martinon F, Burns K. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell. 2002;10(2):417–26. https://doi.org/10.1016/s1097-2765(02)00599-3.

    Article  CAS  PubMed  Google Scholar 

  91. Sharma D, Kanneganti TD. The cell biology of inflammasomes: mechanisms of inflammasome activation and regulation. J Cell Biol. 2016;213(6):617–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mulay SR. Multifactorial functions of the inflammasome component NLRP3 in pathogenesis of chronic kidney diseases. Kidney Int. 2019;96(1):58–66.

    Article  CAS  PubMed  Google Scholar 

  93. Franchi L, Warner N, Viani K, Nuñez G. Function of nod-like receptors in microbial recognition and host defense. Immunol Rev. 2009;227(1):106–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vajjhala PR, Mirams RE, Hill JM. Multiple binding sites on the pyrin domain of ASC protein allow self-association and interaction with NLRP3 protein. J Biol Chem. 2012;287(50):41732–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rathinam VAK, Vanaja SK, Fitzgerald KA. Regulation of inflammasome signaling. Nat Immunol. 2012;13(4):333–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. He Y, Hara H, Núñez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci. 2016;41(12):1012–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hoseini Z, Sepahvand F, Rashidi B, Sahebkar A, Masoudifar A, Mirzaei H. NLRP3 inflammasome: its regulation and involvement in atherosclerosis. J Cell Physiol. 2018;233(3):2116–32.

    Article  CAS  PubMed  Google Scholar 

  98. Vilaysane A, Chun J, Seamone ME, Wang W, Chin R, Hirota S, et al. The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J Am Soc Nephrol. 2010;21(10):1732–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Viganò E, Diamond CE, Spreafico R, Balachander A, Sobota RM, Mortellaro A. Human caspase-4 and caspase-5 regulate the one-step non-canonical inflammasome activation in monocytes. Nat Commun. 2015;6:8761.

    Article  PubMed  Google Scholar 

  100. Non-canonical activation of inflammatory caspases by cytosolic LPS in innate immunity | Elsevier Enhanced Reader [Internet]. 3 August 2022. https://reader.elsevier.com/reader/sd/pii/S0952791515000084?token=035A6ADC7E38FCB083AFC98725556A361E0AFB01FB4D10FDE704B75679FE63D84C9533A3A8E5E63579008BF679651D39&originRegion=us-east-1&originCreation=20220803121837

  101. Kayagaki N, Warming S, Lamkanfi M, Walle LV, Louie S, Dong J, et al. Non-canonical inflammasome activation targets caspase-11. Nature. 2011;479(7371):117–21.

    Article  CAS  PubMed  Google Scholar 

  102. Broz P, Ruby T, Belhocine K, Bouley DM, Kayagaki N, Dixit VM, et al. Caspase-11 increases susceptibility to salmonella infection in the absence of caspase-1. Nature. 2012;490(7419):288–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660–5.

    Article  CAS  PubMed  Google Scholar 

  104. Levey AS, James MT. Acute kidney injury. Ann Intern Med. 2017;167(9):ITC66–80.

    Article  PubMed  Google Scholar 

  105. Gómez H, Kellum JA. Sepsis-induced acute kidney injury. Curr Opin Crit Care. 2016;22(6):546–53.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Yang K, Li WF, Yu JF, Yi C, Huang WF. Diosmetin protects against ischemia/reperfusion-induced acute kidney injury in mice. J Surg Res. 2017;214:69–78.

    Article  CAS  PubMed  Google Scholar 

  107. Fähling M, Seeliger E, Patzak A, Persson PB. Understanding and preventing contrast-induced acute kidney injury. Nat Rev Nephrol. 2017;13(3):169–80.

    Article  PubMed  Google Scholar 

  108. Leemans JC, Kors L, Anders HJ, Florquin S. Pattern recognition receptors and the inflammasome in kidney disease. Nat Rev Nephrol. 2014;10(7):398–414.

    Article  CAS  PubMed  Google Scholar 

  109. Liu D, Xu M, Ding LH, Lv LL, Liu H, Ma KL, et al. Activation of the Nlrp3 inflammasome by mitochondrial reactive oxygen species: a novel mechanism of albumin-induced tubulointerstitial inflammation. Int J Biochem Cell Biol. 2014;57:7–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wen Y, Liu YR, Tang TT, Pan MM, Xu SC, Ma KL, et al. mROS-TXNIP axis activates NLRP3 inflammasome to mediate renal injury during ischemic AKI. Int J Biochem Cell Biol. 2018;98:43–53.

    Article  CAS  PubMed  Google Scholar 

  111. Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004;23(12):2369–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhao W, Zhang L, Sui M, Zhu Y, Zeng L. Protective effects of sirtuin 3 in a murine model of sepsis-induced acute kidney injury. Sci Rep. 2016;6(1):33201. https://www.scinapse.io

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhao W, Zhang L, Chen R, Lu H, Sui M, Zhu Y, et al. SIRT3 protects against acute kidney injury via AMPK/mTOR-regulated autophagy. Front Physiol. 2018;9:1526.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Huang TH, Wu TH, Guo YH, Li TL, Chan YL, Wu CJ. The concurrent treatment of Scutellaria baicalensis Georgi enhances the therapeutic efficacy of cisplatin but also attenuates chemotherapy-induced cachexia and acute kidney injury. J Ethnopharmacol. 2019;243:112075.

    Article  CAS  PubMed  Google Scholar 

  115. Qu X, Gao H, Tao L, Zhang Y, Zhai J, Song Y, et al. Autophagy inhibition-enhanced assembly of the NLRP3 inflammasome is associated with cisplatin-induced acute injury to the liver and kidneys in rats. J Biochem Mol Toxicol. 2018;33:e22208.

    Article  Google Scholar 

  116. Komada T, Usui F, Kawashima A, Kimura H, Karasawa T, Inoue Y, et al. Role of NLRP3 inflammasomes for rhabdomyolysis-induced acute kidney injury. Sci Rep. 2015;5(1):10901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Shen J, Wang L, Jiang N, Mou S, Zhang M, Gu L, et al. NLRP3 inflammasome mediates contrast media-induced acute kidney injury by regulating cell apoptosis. Sci Rep. 2016;6(1):34682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tan X, Zheng X, Huang Z, Lin J, Xie C, Lin Y. Involvement of S100A8/A9-TLR4-NLRP3 inflammasome pathway in contrast-induced acute kidney injury. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2017;43(1):209–22.

    Article  CAS  Google Scholar 

  119. Denes A, Coutts G, Lénárt N, Cruickshank SM, Pelegrin P, Skinner J, et al. AIM2 and NLRC4 inflammasomes contribute with ASC to acute brain injury independently of NLRP3. Proc Natl Acad Sci U S A. 2015;112(13):4050–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhen J, Zhang L, Pan J, Ma S, Yu X, Li X, et al. AIM2 mediates inflammation-associated renal damage in hepatitis B virus-associated glomerulonephritis by regulating caspase-1, IL-1β, and IL-18. Mediat Inflamm. 2014;2014:190860. https://doi.org/10.1155/2014/190860.

    Article  CAS  Google Scholar 

  121. Zhang W, Cai Y, Xu W, Yin Z, Gao X, Xiong S. AIM2 facilitates the apoptotic DNA-induced systemic lupus erythematosus via arbitrating macrophage functional maturation. J Clin Immunol. 2013;33(5):925–37.

    Article  PubMed  Google Scholar 

  122. Komada T, Chung H, Lau A, Platnich JM, Beck PL, Benediktsson H, et al. Macrophage uptake of necrotic cell DNA activates the AIM2 inflammasome to regulate a proinflammatory phenotype in CKD. J Am Soc Nephrol. 2018;29(4):1165–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yuan F, Kolb R, Pandey G, Li W, Sun L, Liu F, et al. Involvement of the NLRC4-Inflammasome in diabetic nephropathy. PLoS One. 2016;11(10):e0164135.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Guan C, Huang X, Yue J, Xiang H, Shaheen S, Jiang Z, et al. SIRT3-mediated deacetylation of NLRC4 promotes inflammasome activation. Theranostics. 2021;11(8):3981–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Guo Y, Zhang J, Lai X, Chen M, Guo Y. Tim-3 exacerbates kidney ischaemia/reperfusion injury through the TLR-4/NF-κB signalling pathway and an NLR-C4 inflammasome activation. Clin Exp Immunol. 2018;193(1):113–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Meissner TB, Li A, Biswas A, Lee KH, Liu YJ, Bayir E, et al. NLR family member NLRC5 is a transcriptional regulator of MHC class I genes. Proc Natl Acad Sci. 2010;107(31):13794–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Li Q, Wang Z, Zhang Y, Zhu J, Li L, Wang X, et al. NLRC5 deficiency protects against acute kidney injury in mice by mediating carcinoembryonic antigen–related cell adhesion molecule 1 signaling. Kidney Int. 2018;94(3):551–66.

    Article  PubMed  Google Scholar 

  128. Nagaishi T, Pao L, Lin SH, Iijima H, Kaser A, Qiao SW, et al. SHP1 phosphatase-dependent T cell inhibition by CEACAM1 adhesion molecule isoforms. Immunity. 2006;25(5):769–81.

    Article  CAS  PubMed  Google Scholar 

  129. Luan P, Zhuang J, Zou J, Li H, Shuai P, Xu X, et al. NLRC5 deficiency ameliorates diabetic nephropathy through alleviating inflammation. FASEB J. 2018;32(2):1070–84.

    Article  CAS  PubMed  Google Scholar 

  130. Martin M, Blom AM. Complement in removal of the dead - balancing inflammation. Immunol Rev. 2016;274(1):218–32.

    Article  CAS  PubMed  Google Scholar 

  131. McCullough JW, Renner B, Thurman JM. The role of the complement system in acute kidney injury. Semin Nephrol. 2013;33(6):543–56. https://doi.org/10.1016/j.semnephrol.2013.08.005.

    Article  CAS  PubMed  Google Scholar 

  132. Franzin R, Stasi A, Fiorentino M, Stallone G, Cantaluppi V, Gesualdo L, et al. Inflammaging and complement system: a link between acute kidney injury and chronic graft damage. Front Immunol. 2020;11:734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Portilla D, Xavier S. Role of intracellular complement activation in kidney fibrosis. Br J Pharmacol. 2021;178(14):2880–91.

    Article  CAS  PubMed  Google Scholar 

  134. Skoglund C, Wetterö J, Bengtsson T. C1q regulates collagen-dependent production of reactive oxygen species, aggregation and levels of soluble P-selectin in whole blood. Immunol Lett. 2012;142(1):28–33.

    Article  CAS  PubMed  Google Scholar 

  135. Thurman JM, Lucia MS, Ljubanovic D, Holers VM. Acute tubular necrosis is characterized by activation of the alternative pathway of complement. Kidney Int. 2005;67(2):524–30.

    Article  CAS  PubMed  Google Scholar 

  136. Brar JE, Quigg RJ. Complement activation in the tubulointerstitium: AKI, CKD, and in between. Kidney Int. 2014;86(4):663–6.

    Article  CAS  PubMed  Google Scholar 

  137. El-Rashid M, Ghimire K, Sanganeria B, Lu B, Rogers NM. CD47 limits autophagy to promote acute kidney injury. FASEB J. 2019;33(11):12735–49. https://doi.org/10.1096/fj.201900120RR.

    Article  CAS  PubMed  Google Scholar 

  138. Yamada K, Miwa T, Liu J, Nangaku M, Song WC. Critical protection from renal ischemia reperfusion injury by CD55 and CD59. J Immunol. 2004;172(6):3869–75.

    Article  CAS  PubMed  Google Scholar 

  139. Peng Q, Li K, Smyth LA, Xing G, Wang N, Meader L, et al. C3a and C5a promote renal ischemia-reperfusion injury. J Am Soc Nephrol. 2012;23(9):1474–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhang Z. Association of C5a/C5aR pathway to activate ERK1/2 and p38 MAPK in acute kidney injury – a mouse model. Rev Romana Med Lab. 2022;30:31–40.

    Google Scholar 

  141. Li D, Zou L, Feng Y, Xu G, Gong Y, Zhao G, et al. Complement factor B production in renal tubular cells and its role in sodium transporter expression during polymicrobial sepsis. Crit Care Med. 2016;44(5):e289–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zou L, Feng Y, Li Y, Zhang M, Chen C, Cai J, et al. Complement factor B is the downstream effector of TLRs and plays an important role in a mouse model of severe sepsis. J Immunol. 2013;191(11):5625–35.

    Article  CAS  PubMed  Google Scholar 

  143. Alexander JJ, Wang Y, Chang A, Jacob A, Minto AWM, Karmegam M, et al. Mouse podocyte complement factor H: the functional analog to human complement receptor 1. J Am Soc Nephrol. 2007;18(4):1157–66.

    Article  CAS  PubMed  Google Scholar 

  144. Castellano G, Melchiorre R, Loverre A, Ditonno P, Montinaro V, Rossini M, et al. Therapeutic targeting of classical and lectin pathways of complement protects from ischemia-reperfusion-induced renal damage. Am J Pathol. 2010;176(4):1648–59.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Lu F, Chauhan AK, Fernandes SM, Walsh MT, Wagner DD, Davis AE. The effect of C1 inhibitor on intestinal ischemia and reperfusion injury. Am J Physiol Gastrointest Liver Physiol. 2008;295(5):G1042–9.

    Article  CAS  PubMed  Google Scholar 

  146. Danobeitia JS, Ziemelis M, Ma X, Zitur LJ, Zens T, Chlebeck PJ, et al. Complement inhibition attenuates acute kidney injury after ischemia-reperfusion and limits progression to renal fibrosis in mice. PLoS One. 2017;12(8):e0183701.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Barnett ANR, Asgari E, Chowdhury P, Sacks SH, Dorling A, Mamode N. The use of eculizumab in renal transplantation. Clin Transpl. 2013;27(3):E216–29.

    Article  CAS  Google Scholar 

  148. Thurman JM, Royer PA, Ljubanovic D, Dursun B, Lenderink AM, Edelstein CL, et al. Treatment with an inhibitory monoclonal antibody to mouse factor B protects mice from induction of apoptosis and renal ischemia/reperfusion injury. J Am Soc Nephrol. 2006;17(3):707–15.

    Article  CAS  PubMed  Google Scholar 

  149. Miwa T, Sato S, Gullipalli D, Nangaku M, Song WC. Blocking properdin, the alternative pathway, and anaphylatoxin receptors ameliorates renal ischemia-reperfusion injury in decay-accelerating factor and CD59 double-knockout mice. J Immunol. 2013;190(7):3552–9.

    Article  CAS  PubMed  Google Scholar 

  150. Thurman JM, Ljubanović D, Royer PA, Kraus DM, Molina H, Barry NP, et al. Altered renal tubular expression of the complement inhibitor Crry permits complement activation after ischemia/reperfusion. J Clin Invest. 2006;116(2):357–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elkin Navarro-Quiroz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zarate-Peñata, E.D.C., Fiorillo-Moreno, O., Meza-Torres, C., Navarro-Quiroz, E. (2023). Cytokines, Chemokines, Inflammasomes, Myokines and Complement-Related Factors in Acute Kidney Injury. In: Musso, C.G., Covic, A. (eds) Organ Crosstalk in Acute Kidney Injury. Springer, Cham. https://doi.org/10.1007/978-3-031-36789-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36789-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36788-5

  • Online ISBN: 978-3-031-36789-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics