Skip to main content

Neurotransmitters and Autonomous Nervous System

  • Chapter
  • First Online:
Organ Crosstalk in Acute Kidney Injury
  • 242 Accesses

Abstract

During acute kidney injury there is a rapid loss of kidney function with accumulation of end-metabolic products and abnormal composition of body fluids, electrolytes, and acid-base homeostasis. Neurohumoral activation with a special role of the sympathetic nervous system contributes to maintaining homeostasis of the renal function.

The autonomic nervous system (ANS) innerves major structural components of the kidneys (tubules, pelvis, blood vessels, and glomeruli) through renal efferent and afferent nerves. ANS regulates renal blood flow, glomerular filtration rate, tubular sodium and water reabsorption, and renin and prostaglandins release. The kidneys only receive sympathetic nerve activity. The sympathetic afferent nerves are part of the autonomic nervous system and allow a connection between the central nervous system and the kidneys. They do this by releasing small molecules called neurotransmitters.

These molecules are delivered in the proximity of the point of action through the synapses at which a neuron communicates with an effector cell. Most synapses in the mammal are the chemical type and use neurotransmitters as messengers.

This chapter aims to review basic concepts of the function and regulation of the sympathetic nervous system anatomy, neurotransmitter implications, and control of renal function in the physiological state and the role that it plays in pathophysiologic conditions such as acute kidney injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumagai H, Oshima N, Matsuura T, Iigaya K, Imai M, Onimaru H, et al. Importance of rostral ventrolateral medulla neurons in determining efferent sympathetic nerve activity and blood pressure. Hypertens Res. 2012;35:132–41. https://doi.org/10.1038/hr.2011.208.

    Article  CAS  PubMed  Google Scholar 

  2. DiBona GF. Neural control of the kidney: functionally specific renal sympathetic nerve fibers. Am J Physiol Regul Integr Comp Physiol. 2000;279:R1517–24. https://doi.org/10.1152/ajpregu.2000.279.5.R1517.

    Article  CAS  PubMed  Google Scholar 

  3. McCorry LK. Physiology of the autonomic nervous system. Am J Pharm Educ. 2007;71(4):78. https://doi.org/10.5688/aj710478.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Glick DB. The autonomic nervous system. In: Miller RD, Eriksson LI, Fleisher LA, et al., editors. Miller’s anesthesia. 7th ed. Philadelphia: Elsevier; 2011. p. 261–304.

    Google Scholar 

  5. Nurse CA. Neurotransmitter and neuromodulatory mechanisms at peripheral arterial chemoreceptors. Exp Physiol. 2010;95:657–67.

    Article  CAS  PubMed  Google Scholar 

  6. Gibbins I. Functional organization of autonomic neural pathways. Organogenesis. 2013;9(3):169–75.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nathan PW, Smith MC. The location of descending fibers to sympathetic preganglionic vasomotor and sudomotor neurons in man. J Neurol Neurosurg Psychiatry. 1987;50:1253–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jessell TM, Kandel ER. Synaptic transmission: a bidirectional and self-modifiable form of cell-cell communication. Cell. 1993:721–30. https://doi.org/10.1016/S0092-8674(05)80025-X.

  9. Pereda AE. Electrical synapses and their functional interactions with chemical synapses. Nat Rev Neurosci. 2014;15(4):250–63. https://doi.org/10.1038/nrn3708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kelly RB. Storage and release of neurotransmitters. Cell. 1993:7243–53. https://doi.org/10.1016/S0092-8674(05)80027-3.

  11. Burnstock G. The changing face of autonomic neurotransmission. Acta Physiol Scand. 1986;126(1):67–91. https://doi.org/10.1111/j.1748-1716.1986.tb07790.x.

    Article  CAS  PubMed  Google Scholar 

  12. Rang HP, Ritter JM, Flower R, Henderson G. Chapter 14: Noradrenergic transmission. In: Rang & Dale’s pharmacology. Elsevier Health Sciences; 2014. 177–96. ISBN 978-0-7020-5497-6.

    Google Scholar 

  13. Musacchio JM. Chapter 1: Enzymes involved in the biosynthesis and degradation of catecholamines. In: Iverson L, editor. Biochemistry of biogenic amines. Springer; 2013. 1–35. ISBN 978-1-4684-3171-1.

    Google Scholar 

  14. Eisenhofer G, Kopin IJ, Goldstein DS. Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev. 2004;56(3):331–49. https://doi.org/10.1124/pr.56.3.1.

    Article  CAS  PubMed  Google Scholar 

  15. Joseph Feher (2012) The adrenal medulla and integration of metabolic control. In: Quantitative human physiology. Elsevier 916-923

    Google Scholar 

  16. Tiwari P, Dwivedi S, Singh MP, Mishra R, Chandy A. Basic and modern concepts on cholinergic receptor: a review. Asian Pac J Trop Dis. 2013;3(5):413–20. https://doi.org/10.1016/S2222-1808(13)60094-8.

    Article  CAS  PubMed Central  Google Scholar 

  17. Garthwaite J, Boulton CL. Nitric oxide signaling in the central nervous system. Annu Rev Physiol. 1995;57(1):683–706. https://doi.org/10.1146/annurev.ph.57.030195.003343.

    Article  CAS  PubMed  Google Scholar 

  18. Barajas L, Liu L, Powers K. Anatomy of the renal innervation: intrarenal aspects and ganglia of origin. Can J Physiol Pharmacol. 1992;70:735–49. https://doi.org/10.1139/y92-098.

    Article  CAS  PubMed  Google Scholar 

  19. Johns EJ, Kopp UC, DiBona GF, Terjung R. Neural control of renal function. Compr Physiol. 2011;1(2):731–67.

    Article  PubMed  Google Scholar 

  20. Mulder J, Hokfelt T, Knuepfer MM, Kopp UC. Renal sensory and sympathetic nerves reinnervate the kidney in a similar time dependent fashion following renal denervation in rats. Am J Physiol Regul Integr Comp Physiol. 2013;304:R675–82. https://doi.org/10.1152/ajpregu.00599.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hering D, Winklewski PJ. R1 autonomic nervous system in acute kidney injury. Clin Exp Pharmacol Physiol. 2017;44(2):162–71. https://doi.org/10.1111/1440-1681.12694.

    Article  CAS  PubMed  Google Scholar 

  22. Johnston GR, Webster NR. Cytokines and the immunomodulatory function of the vagus nerve. Br J Anaesth. 2009;102:453–62.

    Article  CAS  PubMed  Google Scholar 

  23. Barrett CJ, Navakatikyan MA, Malpas SC. Long-term control of renal blood flow: what is the role of the renal nerves? Am J Physiol Regul Integr Comp Physiol. 2001;280:R1534–45. https://doi.org/10.1152/ajpregu.2001.280.5.R1534.

    Article  CAS  PubMed  Google Scholar 

  24. Fujii T, Kurata H, Takaoka M, et al. The role of renal sympathetic nervous system in the pathogenesis of ischemic acute renal failure. Eur J Pharmacol. 2003;481:241–8.

    Article  CAS  PubMed  Google Scholar 

  25. Bonventre JV, Zuk A. Ischemic acute renal failure: an inflammatory disease? Kidney Int. 2004;66:480–5.

    Article  CAS  PubMed  Google Scholar 

  26. Hering D, Marusic P, Walton AS, Lambert EA, Krum H, Narkiewicz K, et al. Sustained sympathetic and blood pressure reduction 1 year after renal denervation in patients with resistant hypertension. Hypertension. 2014;64(1):118–24. https://doi.org/10.1161/HYPERTENSIONAHA.113.03098.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Guillermo Videla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Videla, C.G. (2023). Neurotransmitters and Autonomous Nervous System. In: Musso, C.G., Covic, A. (eds) Organ Crosstalk in Acute Kidney Injury. Springer, Cham. https://doi.org/10.1007/978-3-031-36789-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36789-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36788-5

  • Online ISBN: 978-3-031-36789-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics