Skip to main content

Empirical Test Methods to Evaluate Rheological Properties of Concrete and Mortar

  • 185 Accesses

Part of the book series: RILEM State-of-the-Art Reports ((RILEM State Art Reports,volume 39))

Abstract

Several empirical test methods used to measure the workability of cement-based materials under field conditions can be employed to evaluate the fundamental rheological properties of these materials. This chapter summarized some of the analytical solutions of different workability test methods for concrete and mortar from the rheological basis. Many of the relationships between the various workability parameters of concrete and mortar determined using empirical tests and their corresponding rheological properties, namely yield stress, plastic viscosity, and thixotropy are evaluated. Limitations of the applicability of the various empirical methods are highlighted to avoid erroneous estimates of rheological characteristics. Established relations between flow properties of 3D printing mortar measured by empirical squeeze and penetration tests and the rheological characteristics are also presented. Other test methods for monitoring the output of concrete mixing trucks, including the imposed load and hydraulic pressure, and the correlations between the rheological performance are discussed for the application of in-drum measurement systems.

With contributions from: Jon Wallevik, Mohammed Sonebi, Sofiane Amziane and Markus Greim

Jon Wallevik—Icelandic Meteorological Office, Iceland.

Mohammed Sonebi—Queen’s University Belfast, United Kingdom.

Sofiane Amziane—Clermont-Ferrand Polytechnique, France.

Markus Greim—Schleibinger Gerate, Germany.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bartos PJ, Sonebi M, Tamimi AK (eds) (2002) Report 24: workability and rheology of fresh concrete: compendium of tests–report of RILEM technical committee TC 145-WSM (vol. 24). RILEM Publications

    Google Scholar 

  2. ACI Committee 238 (2008) Report on measurements of workability and rheology of fresh concrete, committee document 238.1R. American Concrete Institute, Farmington Hills, MI, USA

    Google Scholar 

  3. Murata J, Kikukawa H (1973) Studies on rheological analysis of fresh concrete, fresh concrete: important properties and their measurement. In: Proceedings of a RILEM seminar. University of Leeds, Great Britain, pp 1.2-1–1.2-33

    Google Scholar 

  4. Hu C (1995) Rhéologie des Bétons Fluides. PhD dissertation, École Nationale des Ponts et Chaussées, Champs-sur-Marne, France. (In French)

    Google Scholar 

  5. Ferraris CF, de Larrard F (1998) Testing and modelling of fresh concrete rheology (NISTIR 6094). National Institute of Standard and Technology (NIST), Gaithersburg, USA

    Book  Google Scholar 

  6. Wallevik JE (2006) Relationship between the Bingham parameters and slump. Cem Concr Res 36(7):1214–1221

    Article  Google Scholar 

  7. Saak AW, Jennings HM, Shah SP (2004) A generalized approach for the determination of yield stress by slump and slump flow. Cem Concr Res 34(3):363–371

    Article  Google Scholar 

  8. Roussel N, Coussot P (2005) “Fifty-cent rheometer” for yield stress measurements: from slump to spreading flow. J Rheol 49(3):705–718

    Article  Google Scholar 

  9. Roussel N (2006) Correlation between yield stress and slump: comparison between numerical simulations and concrete rheometers results. Mater Struct 39(4):501–509

    Article  Google Scholar 

  10. Feys D, Khayat KH, Khatib R (2016) How do concrete rheology, tribology, flow rate and pipe radius influence pumping pressure? Cement Concr Compos 66:38–46

    Article  Google Scholar 

  11. Müller FV, Wallevik O, Khayat KH (2014) Linking yield stress of a co-axial cylinders viscometer and parameters of consistency testing using the Abrams cone. In: International symposium on environmentally friendly concrete-ECO-crete. Reykjavik, Iceland, pp 217–224

    Google Scholar 

  12. Coussot P, Proust S, Ancey C (1996) Rheological interpretation of deposits of yield stress fluids. J Nonnewton Fluid Mech 66(1):55–70

    Article  Google Scholar 

  13. Sedran T (1999) Rheologie et rheometrie des betons, application aux betons autonivelants. PhD dissertation, Ecole Nationale des Ponts et Chaussées, Champs-sur-Marne, France. (In French)

    Google Scholar 

  14. González-Taboada I, González-Fonteboa B, Martínez-Abella F, Carro-López D (2017) Self-compacting recycled concrete: relationships between empirical and rheological parameters and proposal of a workability box. Constr Build Mater 143:537–546

    Article  Google Scholar 

  15. Kokado T, Miyagawa T (1999) Study on a method of obtaining rheological coefficients of high-flow concrete from slump flow test. Doboku Gakkai Ronbunshu 634:113–129 (In Japanese)

    Article  Google Scholar 

  16. Kurokawa Y (1996) Study on slump test and slump-flow test of fresh concrete. Trans Jpn Concr Inst 16:25–32

    Google Scholar 

  17. Sedran T, de Larrard F (1999) Optimization of self compacting concrete thanks to packing model. In: Skarendahl Ả, Petersson Ö (eds) Self-compacting concrete. Cachan, France, pp 321–332

    Google Scholar 

  18. Grünewald S (2004) Performance-based design of self-compacting fibre reinforced concrete. PhD dissertation, Delft University of Technology, Delft, The Netherlands

    Google Scholar 

  19. Long WJ, Khayat KH, Yahia A, Xing F (2017) Rheological approach in proportioning and evaluating prestressed self-consolidating concrete. Cement Concr Compos 82:105–116

    Article  Google Scholar 

  20. Mikanovic N, Leclerc A, Ponge A, Khayat KH (2010) Workability characteristics and performance criteria for design and control of super workable concrete. In: 6th International RILEM symposium on SCC and 4th North American conference on the design and use of SCC. Montréal, Canada, pp 527–537

    Google Scholar 

  21. Rouis F (2017) Effet des caractéristiques physico chimiques des ajouts minéraux sur les propriétés rhéologiques des mortiers de bétons fluides équivalents. PhD dissertation, Université de Sherbrooke, Québec, Canada. (In French)

    Google Scholar 

  22. Benaicha M (2013) Formulation des différents bétons (BAP, BHP et BFUP) à haute teneur en additions minérales: optimisation pour améliorer le coulage, la résistance au jeune âge et la durabilité des bétons. PhD dissertation, Aix Marseille Université, Marseille, France. (In French)

    Google Scholar 

  23. Benaicha M, Roguiez X, Jalbaud O, Burtschell Y, Alaoui AH (2016) New approach to determine the plastic viscosity of self-compacting concrete. Front Struct Civ Eng 10(2):198–208

    Article  Google Scholar 

  24. Nguyen TLH, Roussel N, Coussot P (2006) Correlation between L-box test and rheological parameters of a homogeneous yield stress fluid. Cem Concr Res 36(10):1789–1796

    Article  Google Scholar 

  25. Khayat KH, Mitchell D (2008) Self-consolidating concrete for precast, prestressed concrete bridge elements (NCHRP Report 628). National Academies of Sciences, Engineering, and Medicine, Washington, USA

    Google Scholar 

  26. ASTM C143/C143M-20 (2020) Standard test method for slump of hydraulic-cement concrete. American Society for Testing and Materials, West Conshohocken, PA, USA

    Google Scholar 

  27. BS EN 12350-2 (2019) Testing fresh concrete. Slump test, British Standards Institution

    Google Scholar 

  28. Ferraris CF, Brower LE, Banfill PFG, Beaupre D, Chapdelaine F, de Larrard F, Domone P, Nachbaur L, Sedran T, Wallevik OH, Wallevik JE (2001) Comparison of concrete rheometers: international tests at LCPC (Nantes, France) in October 2000, NISTIR 6819

    Google Scholar 

  29. ASTM C1611/C1611M-18 (2018) Standard test method for slump flow of self-consolidating concrete. American Society for Testing and Materials, West Conshohocken, PA, USA

    Google Scholar 

  30. Khayat KH, Omran AF (2010) Evaluation of SCC formwork pressure. Concr Int 32(6):30–34

    Google Scholar 

  31. Omran AF, Naji S, Khayat KH (2011) Portable vane test to assess structural buildup at rest of self-consolidating concrete. ACI Mater J 108(6)

    Google Scholar 

  32. Khayat KH, Omran AF, Naji S, Billberg P, Yahia A (2012) Field-oriented test methods to evaluate structural build-up at rest of flowable mortar and concrete. Mater Struct 45(10):1547–1564

    Article  Google Scholar 

  33. Megid WA, Khayat KH (2018) Evaluating structural buildup at rest of self-consolidating concrete using workability tests. ACI Mater J 115(2)

    Google Scholar 

  34. Schipper HR (2015) Double-curved precast concrete elements-research into technical viability of the flexible mould method. PhD dissertation, Delft University of Technology, Delft, The Netherlands

    Google Scholar 

  35. Roussel N, Stéfani C, Leroy R (2005) From mini-cone test to Abrams cone test: measurement of cement-based materials yield stress using slump tests. Cem Concr Res 35(5):817–822

    Article  Google Scholar 

  36. Choi MS, Lee JS, Ryu KS, Koh KT, Kwon SH (2016) Estimation of rheological properties of UHPC using mini slump test. Constr Build Mater 106:632–639

    Article  Google Scholar 

  37. Mikanovic N, Rouis F, Khayat KH (2010) Influence of supplementary cementitious materials and fillers on rheological properties, kinetics of cement hydration, and compressive strength of concrete-equivalent mortar of SCC consistency. In: 6th International RILEM symposium on SCC and 4th North American conference on the design and use of SCC. Montréal, Canada, pp 381–394

    Google Scholar 

  38. Meng W, Khayat KH (2017) Improving flexural performance of ultra-high-performance concrete by rheology control of suspending mortar. Compos B Eng 117:26–34

    Article  Google Scholar 

  39. Teng L, Meng W, Khayat KH (2020) Rheology control of ultra-high-performance concrete made with different fiber contents. Cem Concr Res 138:106222

    Article  Google Scholar 

  40. ASTM D3441-16 (2016) Standard test method for mechanical cone penetration tests of soil. American Society for Testing and Materials, West Conshohocken, PA, USA

    Google Scholar 

  41. Toutou Z, Roussel N, Lanos C (2005) The squeezing test: a tool to identify firm cement-based material’s rheological behaviour and evaluate their extrusion ability. Cem Concr Res 35(10):1891–1899

    Article  Google Scholar 

  42. Sherwood JD, Durban D (1996) Squeeze flow of a power-law viscoplastic solid. J Nonnewton Fluid Mech 62(1):35–54

    Article  Google Scholar 

  43. Grandes FA, Sakano VK, Rego AC, Cardoso FA, Pileggi RG (2018) Squeeze flow coupled with dynamic pressure mapping for the rheological evaluation of cement-based mortars. Cement Concr Compos 92:18–35

    Article  Google Scholar 

  44. Lootens D, Jousset P, Martinie L, Roussel N, Flatt RJ (2009) Yield stress during setting of cement pastes from penetration tests. Cem Concr Res 39(5):401–408

    Article  Google Scholar 

  45. Mazhoud B, Perrot A, Picandet V, Rangeard D, Courteille E (2019) Underwater 3D printing of cement-based mortar. Constr Build Mater 214:458–467

    Article  Google Scholar 

  46. Roussel N, Lanos C, Toutou Z (2006) Identification of Bingham fluid flow parameters using a simple squeeze test. J Nonnewton Fluid Mech 135(1):1–7

    Article  MATH  Google Scholar 

  47. Cardoso FA, John VM, Pileggi RG, Banfill PFG (2014) Characterisation of rendering mortars by squeeze-flow and rotational rheometry. Cem Concr Res 57:79–87

    Article  Google Scholar 

  48. Nair SA, Alghamdi H, Arora A, Mehdipour I, Sant G, Neithalath N (2019) Linking fresh paste microstructure, rheology and extrusion characteristics of cementitious binders for 3D printing. J Am Ceram Soc 102(7):3951–3964

    Article  Google Scholar 

  49. Ma G, Li Z, Wang L (2018) Printable properties of cementitious material containing copper tailings for extrusion based 3D printing. Constr Build Mater 162:613–627

    Article  Google Scholar 

  50. Rubio M, Sonebi M, Amziane S (2017) 3D printing of fibre cement-based materials: fresh and rheological performances. Acad J Civ Eng 35(2):480–488

    Google Scholar 

  51. BS ISO 13765-1:2004 (2006) Refractory mortars. Determination of consistency using the penetrating cone method, British Standards Institution

    Google Scholar 

  52. Daczko JA (2000) A proposal for measuring rheology of production concrete. Concr Int 22(5):47–49

    Google Scholar 

  53. Amziane S, Ferraris CF, Koehler EP (2005) Measurement of workability of fresh concrete using a mixing truck. J Res Nat Inst Stand Technol 110(1):55

    Article  Google Scholar 

  54. Amziane S, Ferraris CF, Koehler E (2006) Feasibility of using a concrete mixing truck as a rheometer (NISTIR 7333). National Institute of Standard and Technology (NIST), Gaithersburg, USA

    Google Scholar 

  55. Ferraris CF, Cooley R, Grein J, Peltz M, Topputo M, Verdino S (2007) Feasibility of using a concrete mixing truck as a rheometer (Orlando, Florida) (NISTIR 7447). National Institute of Standard and Technology (NIST), Gaithersburg, USA

    Google Scholar 

  56. Beaupre D (2012) Mixer-mounted probe measures concrete workability. Concr Int 34(9):46–49

    Google Scholar 

  57. Khayat KH, Libre NA (2014) Automated measurement and control of concrete properties in a ready mix truck with VERIFI (NUTC R335). Missouri University of Science and Technology, Rolla, USA

    Google Scholar 

  58. Libre NA, Khayat KH, Koehler EP (2016) Performance evaluation of automated workability measurement for concrete quality control. In: Transportation research board 95th annual meeting. Washington, USA, p 13

    Google Scholar 

  59. Berger X, Siccardi P, Jean R, Jolin M, Beaupre D, Bissonnette B (2019) On-board concrete rheology measurements using an in-drum sensor system: early stages. In: Mechtcherine V, Khayat K, Secrieru E (eds) Rheology and processing of construction materials, RheoCon2 & SCC9. Springer, Dordrecht, pp 174–181

    Google Scholar 

  60. Padgett P (1996) Shear rate has greater influence on cement slurry properties than total mixing energy. Oil Gas J 94(41)

    Google Scholar 

  61. Chopin D (2003) Malaxage des bétons à hautes performances et des bétons auto-plaçants: optimisation du temps de fabrication. PhD dissertation, Etudes et Recherches des LPC, Paris, France. (In French)

    Google Scholar 

  62. Chopin D, de Larrard F, Cazacliu B (2004) Why do HPC and SCC require a longer mixing time? Cem Concr Res 34(12):2237–2243

    Article  Google Scholar 

  63. Wallevik JE, Wallevik OH (2020) Concrete mixing truck as a rheometer. Cem Concr Res 127:105930

    Article  Google Scholar 

  64. Beaupre D, Chapdelaine J, Chapdelaine F (2015) Probe and method for obtaining rheological property value. US Patent 9199391

    Google Scholar 

  65. Orban JA, Parcevaux PA, Guillot DJ (1986) Specific mixing energy: a key factor for cement slurry quality, SPE 15578. In: 61st Annual technical conference and exhibition of the SPE. New Orleans, USA

    Google Scholar 

  66. Hibbert AP, Kellingray DJ, Vidick B (1995) Effect of mixing energy levels during batch mixing of cement slurries. SPE Drill Complet 10(01):49–52

    Article  Google Scholar 

  67. Siccardi P, Berger X, Jean R, Jolin M, Bissonnette B, Beaupré D (2019) Study of the mixing completion in concrete production by means of an on-board sensor system. In: Mechtcherine V, Khayat K, Secrieru E (eds) Rheology and processing of construction materials, RheoCon2 & SCC9. Springer, Dordrecht, pp 338–345

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Khayat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khayat, K., Zhu, J., Grunewald, S. (2024). Empirical Test Methods to Evaluate Rheological Properties of Concrete and Mortar. In: Sonebi, M., Feys, D. (eds) Measuring Rheological Properties of Cement-based Materials. RILEM State-of-the-Art Reports, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-031-36743-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36743-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36742-7

  • Online ISBN: 978-3-031-36743-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics