Skip to main content

Challenges Encountered During Measuring Rheological Properties of Mortar and Concrete

  • 156 Accesses

Part of the book series: RILEM State-of-the-Art Reports ((RILEM State Art Reports,volume 39))

Abstract

Performing rheological measurements of mortar and concrete is not a straightforward task as many challenges can alter or invalidate the outcome of a rheological experiment. This chapter summarizes the most common challenges for flow curve measurements, which are the type of flow behavior, achieving the reference state, plug flow, shear and gravity-induced particle migration, hydrodynamic pressure, heat of vaporization, correct choice of rheological transformation equations and model, air, and wall effects. Some of these challenges are also detailed separately for static yield stress measurements. For each challenge, the physical background, consequence on the measurement outcome and any detection or prevention strategy are described. To adequately perform rheological measurements, all challenges need to be addressed, which can be a daunting task as some prevention strategies can increase the risk for a different challenge to affect the measurement. Developing a suitable measuring and analysis procedure is a critical task to the success of rheological measurements of mortar and concrete.

With contributions from: Irina Ivanova, Viktor Mechtcherine, Arnaud Perrot, and Ammar Yahia.

I. Ivanova−Technical University, Dresden, Germany.

V. Mechtcherine−Technical University, Dresden, Germany.

A. Perrot−Universite Bretagne Sud, France.

A. Yahia−Universite de Sherbrooke, Canada.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Coussot P (2005) Rheometry of pastes, suspensions, and granular materials: applications in industry and environment. Wiley

    Book  Google Scholar 

  2. Ancey C, Coussot P, Evesque P (1999) A theoretical framework for granular suspensions in a steady simple shear flow. J Rheol 43(6):1673–1699

    Article  Google Scholar 

  3. Huang N, Ovarlez G, Bertrand F, Rodts S, Coussot P, Bonn D (2005) Flow of wet granular materials. Phys Rev Lett 94(2):028301

    Article  Google Scholar 

  4. Hanotin C, Kiesgen de Richter S, Michot LJ, Marchal P (2015) Viscoelasticity of vibrated granular suspensions. J Rheol 59(1):253–273

    Article  Google Scholar 

  5. Koch JA, Castaneda DI, Ewoldt RH, Lange DA (2019) Vibration of fresh concrete understood through the paradigm of granular physics. Cem Concr Res 115:31–42

    Article  Google Scholar 

  6. Browne RD, Bamforth PB (1977) Tests to establish concrete pumpability. J Proc 74(5):193–203

    Google Scholar 

  7. Proske T, Rezvani M, Graubner CA (2020) A new test method to characterize the pressure-dependent shear behavior of fresh concrete. Constr Build Mater 233:117255

    Article  Google Scholar 

  8. Yammine J, Chaouche M, Guerinet M, Moranville M, Roussel N (2008) From ordinary rhelogy concrete to self compacting concrete: a transition between frictional and hydrodynamic interactions. Cem Concr Res 38(7):890–896

    Article  Google Scholar 

  9. Perrot A, Rangeard D, Mélinge Y (2014) Prediction of the ram extrusion force of cement-based materials. Appl Rheol 24(5):34–40

    Google Scholar 

  10. Reiter L (2019) Structural build-up for digital fabrication with concrete-materials, methods and processes. PhD dissertation, ETH Zurich, Switzerland

    Google Scholar 

  11. Alfani R, Guerrini GL (2005) Rheological test methods for the characterization of extrudable cement-based materials—a review. Mater Struct 38(2):239–247

    Article  Google Scholar 

  12. Cardoso FA, John VM, Pileggi RG, Banfill PFG (2014) Characterisation of rendering mortars by squeeze-flow and rotational rheometry. Cem Concr Res 57:79–87

    Article  Google Scholar 

  13. Toutou Z, Roussel N, Lanos C (2005) The squeezing test: a tool to identify firm cement-based material’s rheological behaviour and evaluate their extrusion ability. Cem Concr Res 35(10):1891–1899

    Article  Google Scholar 

  14. Perrot A, Mélinge Y, Rangeard D, Micaelli F, Estellé P, Lanos C (2012) Use of ram extruder as a combined rheo-tribometer to study the behaviour of high yield stress fluids at low strain rate. Rheol Acta 51(8):743–754

    Article  Google Scholar 

  15. Zhou X, Li Z, Fan M, Chen H (2013) Rheology of semi-solid fresh cement pastes and mortars in orifice extrusion. Cement Concr Compos 37:304–311

    Article  Google Scholar 

  16. Perrot A, Lanos C, Melinge Y, Estellé P (2007) Mortar physical properties evolution in extrusion flow. Rheol Acta 46(8):1065–1073

    Article  Google Scholar 

  17. Perrot A, Rangeard D, Melinge Y, Estelle P, Lanos C (2009) Extrusion criterion for firm cement-based materials. Appl Rheol 19(5):53042

    Google Scholar 

  18. Perrot A, Mélinge Y, Estelle P, Rangeard D, Lanos C (2011) The back extrusion test as a technique for determining the rheological and tribological behaviour of yield stress fluids at low shear rates. Appl Rheol 21(5)

    Google Scholar 

  19. Lootens D, Jousset P, Martinie L, Roussel N, Flatt RJ (2009) Yield stress during setting of cement pastes from penetration tests. Cem Concr Res 39(5):401–408

    Article  Google Scholar 

  20. Sleiman H, Perrot A, Amziane S (2010) A new look at the measurement of cementitious paste setting by Vicat test. Cem Concr Res 40(5):681–686

    Article  Google Scholar 

  21. Salinas A (2019) Changes in fresh properties of flowable concrete induced by pumping and composition of the lubrication layer

    Google Scholar 

  22. Cheng DH (1967) Hysteresis loop experiments and the determination of thixotropic properties. Nature 216(5120):1099–1100

    Article  Google Scholar 

  23. Roussel N (2006) A thixotropy model for fresh fluid concretes: theory, validation and applications. Cem Concr Res 36(10):1797–1806

    Article  Google Scholar 

  24. Wallevik JE (2009) Rheological properties of cement paste: thixotropic behavior and structural breakdown. Cem Concr Res 39(1):14–29

    Article  Google Scholar 

  25. Wallevik OH, Wallevik JE (2011) Rheology as a tool in concrete science: the use of rheographs and workability boxes. Cem Concr Res 41(12):1279–1288

    Article  Google Scholar 

  26. Tattersall GH, Banfill PFG (1983) The rheology of fresh concrete. Pitman Books Ltd., Great Britain

    Google Scholar 

  27. Ley-Hernández AM, Feys D, Kumar A (2020) How do different testing procedures affect the rheological properties of cement paste? Cem Concr Res 137:106189

    Article  Google Scholar 

  28. Jarny S, Roussel N, Rodts S, Bertrand F, Le Roy R, Coussot P (2005) Rheological behavior of cement pastes from MRI velocimetry. Cem Concr Res 35(10):1873–1881

    Article  Google Scholar 

  29. Roussel N, Ovarlez G, Garrault S, Brumaud C (2012) The origins of thixotropy of fresh cement pastes. Cem Concr Res 42(1):148–157

    Article  Google Scholar 

  30. De Larrard F, Hu C, Sedran T, Szitkar JC, Joly M, Claux F, Derkx F (1997) A new rheometer for soft-to-fluid fresh concrete. Mater J 94(3):234–243

    Google Scholar 

  31. Tang CW, Yen T, Chang CS, Chen KH (2001) Optimizing mixture proportions for flowable high-performance concrete via rheology tests. Mater J 98(6):493–502

    Google Scholar 

  32. Shi Y, Matsui I, Feng N (2002) Effect of compound mineral powders on workability and rheological property of HPC. Cem Concr Res 32(1):71–78

    Article  Google Scholar 

  33. Geiker MR, Brandl M, Thrane LN, Bager DH, Wallevik O (2002) The effect of measuring procedure on the apparent rheological properties of self-compacting concrete. Cem Concr Res 32(11):1791–1795

    Article  Google Scholar 

  34. Khayat KH, Assaad J (2003) Relationship between washout resistance and rheological properties of high-performance underwater concrete. Mater J 100(3):185–193

    Google Scholar 

  35. Gołaszewski J, Szwabowski J (2003) Influence of cement and superplasticizer on rheological properties of mortars. In: Brittle matrix composites, vol 7. Woodhead Publishing, pp 339–350

    Google Scholar 

  36. Gołaszewski J, Szwabowski J (2004) Influence of superplasticizers on rheological behaviour of fresh cement mortars. Cem Concr Res 34(2):235–248

    Article  Google Scholar 

  37. Yahia A, Tanimura M, Shimoyama Y (2005) Rheological properties of highly flowable mortar containing limestone filler-effect of powder content and W/C ratio. Cem Concr Res 35(3):532–539

    Article  Google Scholar 

  38. Petit JY, Khayat KH, Wirquin E (2006) Coupled effect of time and temperature on variations of yield value of highly flowable mortar. Cem Concr Res 36(5):832–841

    Article  Google Scholar 

  39. Feys D, Verhoeven R, De Schutter G (2008) Fresh self compacting concrete, a shear thickening material. Cem Concr Res 38(7):920–929

    Article  Google Scholar 

  40. Petit JY, Khayat KH, Wirquin E (2009) Coupled effect of time and temperature on variations of plastic viscosity of highly flowable mortar. Cem Concr Res 39(3):165–170

    Article  Google Scholar 

  41. Heirman G, Hendrickx R, Vandewalle L, Van Gemert D, Feys D, De Schutter G, Desmet B, Vantomme J (2009) Integration approach of the Couette inverse problem of powder type self-compacting concrete in a wide-gap concentric cylinder rheometer: Part II. Influence of mineral additions and chemical admixtures on the shear thickening flow behaviour. Cem Concr Res 39(3):171–181

    Google Scholar 

  42. Gołaszewski J (2009) Influence of viscosity enhancing agent on rheology and compressive strength of superplasticized mortars. J Civ Eng Manag 15(2):181–188

    Article  Google Scholar 

  43. Petit JY, Wirquin E, Khayat KH (2010) Effect of temperature on the rheology of flowable mortars. Cem Concr Compos 32(1):43–53

    Article  Google Scholar 

  44. Thrane LN, Pade C, Nielsen CV, Jeknavorian AA, Schemmel JJ, Dean SW (2010) Determination of rheology of self-consolidating concrete using the 4C-Rheometer and how to make use of the results. ASTM Int 7(1):10pp

    Google Scholar 

  45. Esteves LP, Cachim PB, Ferreira VM (2010) Effect of fine aggregate on the rheology properties of high performance cement-silica systems. Constr Build Mater 24(5):640–649

    Article  Google Scholar 

  46. Jau WC, Yang CT (2010) Development of a modified concrete rheometer to measure the rheological behavior of conventional and self-consolidating concretes. Cem Concr Compos 32(6):450–460

    Article  Google Scholar 

  47. Feys D, Wallevik JE, Yahia A, Khayat KH, Wallevik OH (2013) Extension of the Reiner-Riwlin equation to determine modified Bingham parameters measured in coaxial cylinders rheometers. Mater Struct 46(1):289–311

    Article  Google Scholar 

  48. Lima PRL, Toledo Filho RD, Gomes ODFM (2014) Influence of recycled aggregate on the rheological behavior of cement mortar. In: Key engineering materials, vol 600. Trans Tech Publications Ltd., pp 297–307

    Google Scholar 

  49. Faleschini F, Jiménez C, Barra M, Aponte D, Vázquez E, Pellegrino C (2014) Rheology of fresh concretes with recycled aggregates. Constr Build Mater 73:407–416

    Article  Google Scholar 

  50. Ahari RS, Erdem TK, Ramyar K (2015) Effect of various supplementary cementitious materials on rheological properties of self-consolidating concrete. Constr Build Mater 75:89–98

    Article  Google Scholar 

  51. Gesoglu M, Güneyisi E, Ozturan T, Oz HO, Asaad DS (2015) Shear thickening intensity of self-compacting concretes containing rounded lightweight aggregates. Constr Build Mater 79:40–47

    Article  Google Scholar 

  52. Shen L, Jovein HB, Shen S, Li M (2015) Effects of aggregate properties and concrete rheology on stability robustness of self-consolidating concrete. J Mater Civ Eng 27(5):04014159

    Article  Google Scholar 

  53. Güneyisi E, Gesoglu M, Al-Goody A, İpek S (2015) Fresh and rheological behavior of nano-silica and fly ash blended self-compacting concrete. Constr Build Mater 95:29–44

    Article  Google Scholar 

  54. Le HD, Kadri EH, Aggoun S, Vierendeels J, Troch P, De Schutter G (2015) Effect of lubrication layer on velocity profile of concrete in a pumping pipe. Mater Struct 48(12):3991–4003

    Article  Google Scholar 

  55. Cepuritis R, Jacobsen S, Pedersen B, Mørtsell E (2016) Crushed sand in concrete–effect of particle shape in different fractions and filler properties on rheology. Cement Concr Compos 71:26–41

    Article  Google Scholar 

  56. Gołaszewski J, Kostrzanowska-Siedlarz A, Cygan G, Drewniok M (2016) Mortar as a model to predict self-compacting concrete rheological properties as a function of time and temperature. Constr Build Mater 124:1100–1108

    Article  Google Scholar 

  57. Li H, Huang F, Xie Y, Yi Z, Wang Z (2017) Effect of water–powder ratio on shear thickening response of SCC. Constr Build Mater 131:585–591

    Article  Google Scholar 

  58. Feys D, Khayat KH (2017) Particle migration during concrete rheometry: How bad is it? Mater Struct 50(2):1–13

    Article  Google Scholar 

  59. Van Der Vurst F, Grünewald S, Feys D, Lesage K, Vandewalle L, Vantomme J, De Schutter G (2017) Effect of the mix design on the robustness of fresh self-compacting concrete. Cem Concr Compos 82:190–201

    Article  Google Scholar 

  60. Ezziane K, Kadri EH, Soualhi H (2018) Study of the rheological behavior of mortar with silica fume and superplasticizer admixtures according to the water film thickness. KSCE J Civ Eng 22(7):2480–2491

    Article  Google Scholar 

  61. Huang F, Li H, Yi Z, Wang Z, Xie Y (2018) The rheological properties of self-compacting concrete containing superplasticizer and air-entraining agent. Constr Build Mater 166:833–838

    Article  Google Scholar 

  62. Singh RB, Singh B (2018) Rheological behaviour of different grades of self-compacting concrete containing recycled aggregates. Constr Build Mater 161:354–364

    Article  Google Scholar 

  63. González-Taboada I, González-Fonteboa B, Martínez-Abella F, Seara-Paz S (2017) Analysis of rheological behaviour of self-compacting concrete made with recycled aggregates. Constr Build Mater 157:18–25

    Article  Google Scholar 

  64. Bizinotto MB, Faleschini F, Fernández CGJ, Hernández DFA (2017) Effects of chemical admixtures on the rheology of fresh recycled aggregate concretes. Constr Build Mater 151:353–362

    Article  Google Scholar 

  65. Kabagire KD, Yahia A, Chekired M (2019) Toward the prediction of rheological properties of self-consolidating concrete as diphasic material. Constr Build Mater 195:600–612

    Article  Google Scholar 

  66. Matar P, Assaad JJ (2019) Concurrent effects of recycled aggregates and polypropylene fibers on workability and key strength properties of self-consolidating concrete. Constr Build Mater 199:492–500

    Article  Google Scholar 

  67. Wu Z, Khayat KH, Shi C (2019) Changes in rheology and mechanical properties of ultra-high performance concrete with silica fume content. Cem Concr Res 123:105786

    Article  Google Scholar 

  68. Wallevik OH, Feys D, Wallevik JE, Khayat KH (2015) Avoiding inaccurate interpretations of rheological measurements for cement-based materials. Cem Concr Res 78:100–109

    Article  Google Scholar 

  69. De Larrard F, Ferraris CF, Sedran T (1998) Fresh concrete: a Herschel-Bulkley material. Mater Struct 31(7):494–498

    Article  Google Scholar 

  70. Banfill PFG (1987) Feasibility study of a coaxial cylinders viscometer for mortar. Cem Concr Res 17(2):329–339

    Article  Google Scholar 

  71. Assaad J, Khayat KH, Mesbah H (2003) Assessment of thixotropy of flowable and self-consolidating concrete. Mater J 100(2):99–107

    Google Scholar 

  72. Erdem TK, Khayat KH, Yahia A (2009) Correlating rheology of self-consolidating concrete to corresponding concrete-equivalent mortar. ACI Mater J 106(2):154

    Google Scholar 

  73. Hu J, Wang K (2011) Effect of coarse aggregate characteristics on concrete rheology. Constr Build Mater 25(3):1196–1204

    Article  Google Scholar 

  74. Lomboy GR, Wang X, Wang K (2014) Rheological behavior and formwork pressure of SCC, SFSCC, and NC mixtures. Cement Concr Compos 54:110–116

    Article  Google Scholar 

  75. Cordeiro GC, de Alvarenga LMSC, Rocha CAA (2016) Rheological and mechanical properties of concrete containing crushed granite fine aggregate. Constr Build Mater 111:766–773

    Article  Google Scholar 

  76. Secrieru E, Mechtcherine V, Schröfl C, Borin D (2016) Rheological characterisation and prediction of pumpability of strain-hardening cement-based-composites (SHCC) with and without addition of superabsorbent polymers (SAP) at various temperatures. Constr Build Mater 112:581–594

    Article  Google Scholar 

  77. Han D, Kim JH, Lee JH, Kang ST (2017) Critical grain size of fine aggregates in the view of the rheology of mortar. Int J Concr Struct Mater 11(4):627–635

    Article  Google Scholar 

  78. Panda B, Tan MJ (2019) Rheological behavior of high volume fly ash mixtures containing micro silica for digital construction application. Mater Lett 237:348–351

    Article  Google Scholar 

  79. Ye H, Gao X, Zhang L (2019) Influence of time-dependent rheological properties on distinct-layer casting of self-compacting concrete. Constr Build Mater 199:214–224

    Article  Google Scholar 

  80. Jiao D, Shi C, Yuan Q, Zhu D, De Schutter G (2019) Effects of rotational shearing on rheological behavior of fresh mortar with short glass fiber. Constr Build Mater 203:314–321

    Article  Google Scholar 

  81. Macosko CW (1994) Rheology principles, measurements, and applications. VCH Publ. Inc., New York

    Google Scholar 

  82. Wallevik JE (2003) Rheology of particle suspensions—fresh concrete, mortar and cement paste with various types of lignosulfonates. PhD dissertation, The Norwegian University of Science and Technology, Norway

    Google Scholar 

  83. Ramge P, Proske T, Kühne HC (2010) Segregation of coarse aggregates in self-compacting concrete. In: Design, production and placement of self-consolidating concrete. Springer, Dordrecht, pp 113–125

    Google Scholar 

  84. Bethmont S (2005) Segregation mechanism in self-consolidating concrete (SCC): experimental study of granular interactions. PhD dissertation., Ecole Nationale des Ponts et Chaussées, France

    Google Scholar 

  85. Bethmont S, Schwartzentruber LA, Stefani C, Tailhan JL, Rossi P (2009) Contribution of granular interactions to self compacting concrete stability: Development of a new device. Cem Concr Res 39(1):30–35

    Article  Google Scholar 

  86. Esmaeilkhanian B, Diederich P, Khayat KH, Yahia A, Wallevik OH (2017) Influence of particle lattice effect on stability of suspensions: application to self-consolidating concrete. Mater Struct 50(1):39

    Article  Google Scholar 

  87. Esmaeilkhanian B, Khayat KH, Yahia A, Feys D (2014) Effects of mix design parameters and rheological properties on dynamic stability of self-consolidating concrete. Cem Concr Compos 54:21–28

    Article  Google Scholar 

  88. Spangenberg J, Roussel N, Hattel JH, Stang H, Skocek J, Geiker MR (2012) Flow induced particle migration in fresh concrete: theoretical frame, numerical simulations and experimental results on model fluids. Cem Concr Res 42(4):633–641

    Article  Google Scholar 

  89. Spangenberg J, Roussel N, Hattel JH, Thorborg J, Geiker MR, Stang H, Skocek J (2010) Prediction of the impact of flow-induced inhomogeneities in self-compacting concrete (SCC). In Design, production and placement of self-consolidating concrete. Springer, Dordrecht, pp 209–215

    Google Scholar 

  90. Ley-Hernández AM, Feys D (2019) How rheology governs dynamic segregation of self-consolidating concrete. ACI Mater J 116(3)

    Google Scholar 

  91. Ovarlez G, Bertrand F, Coussot P, Chateau X (2012) Shear-induced sedimentation in yield stress fluids. J Nonnewton Fluid Mech 177:19–28

    Article  Google Scholar 

  92. Roussel N (2006) A theoretical frame to study stability of fresh concrete. Mater Struct 39(1):81–91

    Article  Google Scholar 

  93. Massoussi N, Keita E, Roussel N (2017) The heterogeneous nature of bleeding in cement pastes. Cem Concr Res 95:108–116

    Article  Google Scholar 

  94. Perrot A, Lecompte T, Khelifi H, Brumaud C, Hot J, Roussel N (2012) Yield stress and bleeding of fresh cement pastes. Cem Concr Res 42(7):937–944

    Article  Google Scholar 

  95. von Bronk T, Haist M, Lohaus L (2020) The influence of bleeding of cement suspensions on their rheological properties. Materials 13(7):1609

    Article  Google Scholar 

  96. Hoang QG, Kaci A, Kadri EH, Gallias JL (2015) A new methodology for characterizing segregation of cement grouts during rheological tests. Constr Build Mater 96:119–126

    Article  Google Scholar 

  97. Leighton D, Acrivos A (1987) The shear-induced migration of particles in concentrated suspensions. J Fluid Mech 181:415–439

    Article  Google Scholar 

  98. Phillips RJ, Armstrong RC, Brown RA, Graham AL, Abbott JR (1992) A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Phys Fluids A 4(1):30–40

    Article  MATH  Google Scholar 

  99. Kaplan D, de Larrard F, Sedran T (2005) Design of concrete pumping circuit. ACI Mater J 102(2):110

    Google Scholar 

  100. Choi MS, Kim YJ, Kwon SH (2013) Prediction on pipe flow of pumped concrete based on shear-induced particle migration. Cem Concr Res 52:216–224

    Article  Google Scholar 

  101. Feys D, Khayat KH, Perez-Schell A, Khatib R (2015) Prediction of pumping pressure by means of new tribometer for highly-workable concrete. Cem Concr Compos 57:102–115

    Article  Google Scholar 

  102. Nott PR, Brady JF (1994) Pressure-driven flow of suspensions: simulation and theory. J Fluid Mech 275:157–199

    Article  MATH  Google Scholar 

  103. Shauly A, Wachs A, Nir A (1998) Shear-induced particle migration in a polydisperse concentrated suspension. J Rheol 42(6):1329–1348

    Article  MATH  Google Scholar 

  104. Malvern LE (1969) Introduction to the mechanics of continuous medium. Prentice Hall Inc., USA

    Google Scholar 

  105. Mase GE (1970) Schaums outline series: theory and problems of continuum mechanics. McGraw-Hill Inc., USA

    Google Scholar 

  106. Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology. Elsevier Science B. V, Netherlands

    MATH  Google Scholar 

  107. Wallevik JE (2014) Effect of the hydrodynamic pressure on shaft torque for a 4-blades vane rheometer. Int J Heat Fluid Flow 50:95–102

    Article  Google Scholar 

  108. Wallevik JE (2016) Influence of hydrodynamic pressure in a 4-blades vane rheometer. In: Khayat K (ed) SCC 2016—8th international RILEM symposium on self-compacting concrete, Washington, DC, USA, pp 389–396

    Google Scholar 

  109. Wallevik JE (2008) Minimizing end-effects in the coaxial cylinders viscometer: viscoplastic flow inside the ConTec BML Viscometer 3. J Nonnewton Fluid Mech 155(3):116–123

    Article  MATH  Google Scholar 

  110. Reiner M (1949) Deformation and flow: an elementary introduction to theoretical rheology. HK Lewis

    Google Scholar 

  111. Zhu H, Martys NS, Ferraris C, De Kee D (2010) A numerical study of the flow of Bingham-like fluids in two-dimensional vane and cylinder rheometers using a smoothed particle hydrodynamics (SPH) based method. J Nonnewton Fluid Mech 165(7–8):362–375

    Article  MATH  Google Scholar 

  112. Zumdahl SS (1998) Chemical principles, 3rd edn.. Houghton Mifflin Company, Boston, USA

    Google Scholar 

  113. Feys D, Verhoeven R, De Schutter G (2007) Evaluation of time independent rheological models applicable to fresh self-compacting concrete. Appl Rheol 17(5):56244–56251

    Google Scholar 

  114. Wallevik JE (2009) Development of parallel plate-based measuring system for the ConTec viscometer. In: Proceedings of the 3rd international RILEM symposium on rheology of cement suspensions such as fresh concrete, Reykjavik, Iceland. RILEM Publications S.A.R.L

    Google Scholar 

  115. Schramm G (1994) The HAAKE handbook. A practical approach to rheology and rheometry. Gebrueder HAAKE GmbH, Karlsruhe, Federal Republic of Germany

    Google Scholar 

  116. Heirman G, Vandewalle L, Van Gemert D, Wallevik O (2008) Integration approach of the Couette inverse problem of powder type self-compacting concrete in a wide-gap concentric cylinder rheometer. J Nonnewton Fluid Mech 150(2–3):93–103

    Article  MATH  Google Scholar 

  117. Rust AC, Manga M (2002) Effects of bubble deformation on the viscosity of dilute suspensions. J Nonnewton Fluid Mech 104(1):53–63

    Article  MATH  Google Scholar 

  118. Gálvez-Moreno D, Feys D, Riding K (2019) Characterization of air dissolution and reappearance under pressure in cement pastes by means of rheology. Front Mater 6:73

    Article  Google Scholar 

  119. Struble LJ, Jiang Q (2004) Effects of air entrainment on rheology. Mater J 101(6):448–456

    Google Scholar 

  120. Feys D, Roussel N, Verhoeven R, De Schutter G (2009) Influence of air bubbles size and volume fraction on rheological properties of fresh self-compacting concrete. In: 3rd international RILEM symposium on rheology of cement suspensions such as fresh concrete. RILEM Publications, pp 113–120

    Google Scholar 

  121. Roussel N (ed) (2012) Understanding the rheology of concrete. Woodhead Publishing Ltd., Cambridge, UK

    Google Scholar 

  122. Qian Y, Kawashima S (2016) Flow onset of fresh mortars in rheometers: contribution of paste deflocculation and sand particle migration. Cem Concr Res 90:97–103

    Article  Google Scholar 

  123. Ivanova I, Mechtcherine V (2019) Evaluation of structural build-up rate of cementitious materials by means of constant shear rate test: parameter study. In: Rheology and processing of construction materials; RILEM book series, Springer, Cham, Switzerland, pp 209–218

    Google Scholar 

  124. Ivanova I, Mechtcherine V (2020) Possibilities and challenges of constant shear rate test for evaluation of structural build-up rate of cementitious materials. Cem Concr Res 130:105974

    Article  Google Scholar 

  125. Nerella VN, Beigh MAB, Fataei S, Mechtcherine V (2019) Strain-based approach for measuring structural build-up of cement pastes in the context of digital construction. Cem Concr Res 115:530–544

    Article  Google Scholar 

  126. Ivanova I, Mechtcherine V (2020) Effects of volume fraction and surface area of aggregates on the static yield stress and structural build-up of fresh concrete. Materials 13(7):1551

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitri Feys .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feys, D., Wallevik, J.E. (2024). Challenges Encountered During Measuring Rheological Properties of Mortar and Concrete. In: Sonebi, M., Feys, D. (eds) Measuring Rheological Properties of Cement-based Materials. RILEM State-of-the-Art Reports, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-031-36743-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36743-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36742-7

  • Online ISBN: 978-3-031-36743-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics