Abstract
We present a first-order linear-time temporal logic for reasoning about the evolution of directed graphs. Its semantics is based on the counterpart paradigm, thus allowing our logic to represent the creation, duplication, merging, and deletion of elements of a graph as well as how its topology changes over time. We then introduce a positive normal forms presentation, thus simplifying the actual process of verification. We provide the syntax and semantics of our logics with a computer-assisted formalisation using the proof assistant Agda, and we round up the paper by highlighting the crucial aspects of our formalisation and the practical use of quantified temporal logics in a constructive proof assistant.
Research partially supported by the Italian MIUR projects PRIN 2017FTXR7S “IT-MaTTerS” and 20228KXFN2 “STENDHAL” and by the University of Pisa project PRA_2022_99 “FM4HD”.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Baldan, P., Corradini, A., König, B., Lluch Lafuente, A.: A temporal graph logic for verification of graph transformation systems. In: Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409, pp. 1–20. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71998-4_1
Belardinelli, F.: Quantified Modal Logic and the Ontology of Physical Objects. Ph.D. work, Scuola Normale Superiore of Pisa (2004–2005)
Blackburn, P., van Benthem, J., Wolter, F. (eds.): Handbook of Modal Logic, vol. 3. North Holland (2007)
Búr, M., Marussy, K., Meyer, B.H., Varró, D.: Worst-case execution time calculation for query-based monitors by witness generation. ACM Trans. Embed. Comput. Syst. 20(6), 1–36 (2021)
Bustan, D., Flaisher, A., Grumberg, O., Kupferman, O., Vardi, M.Y.: Regular vacuity. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 191–206. Springer, Heidelberg (2005). https://doi.org/10.1007/11560548_16
Coq Development Team: The Coq Proof Assistant Reference Manual (2016)
Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 30–45. Springer (2006)
Coupet-Grimal, S.: An axiomatization of linear temporal logic in the calculus of inductive constructions. J. Logic Comput. 13(6), 801–813 (2003)
Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inform. Comput. 85(1), 12–75 (1990)
Courcelle, B.: The monadic second-order logic of graphs. XII. Planar graphs and planar maps. Theor. Comput. Sci. 237(1), 1–32 (2000)
Danielsson, N.A.: Up-to techniques using sized types. In: POPL 2018, pp. 43:1–43:28. ACM (2018)
Dawar, A., Gardner, P., Ghelli, G.: Expressiveness and complexity of graph logic. Inf. Comput. 205(3), 263–310 (2007)
Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics, pp. 995–1072. Elsevier and MIT Press (1990)
Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.-G.: A fully verified executable LTL model checker. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 463–478. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_31
Franconi, E., Toman, D.: Fixpoint extensions of temporal description logics. In: Calcanese, D., De Giacomo, G., Franconi, E. (eds.) DL 2003. CEUR Workshop Proceedings, vol. 81 (2003)
Gadducci, F., Lluch-Lafuente, A., Vandin, A.: Counterpart semantics for a second-order \(\mu \)-calculus. Fundamenta Informaticae 118(1–2), 177–205 (2012)
Gadducci, F., Trotta, D.: A presheaf semantics for quantified temporal logics. CoRR abs/2111.03855 (2021)
Gadducci, F., Laretto, A., Trotta, D.: Specification and verification of a linear-time temporal logic for graph transformation. CoRR abs/2305.03832 (2023)
Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling and analysis using GROOVE. Int. J. Softw. Tools Technol. Trans. 14(1), 15–40 (2012)
Ghilardi, S., Meloni, G.: Modal and tense predicate logic: models in presheaves and categorical conceptualization. In: Borceux, F. (ed.) Categorical Algebra and its Applications. LNM, vol. 1348, pp. 130–142. Springer (1988)
Ghilardi, S., Meloni, G.: Relational and partial variable sets and basic predicate logic. J. Symbol. Logic 61(3), 843–872 (1996)
Giacomo, G.D., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. In: Yang, Q., Wooldridge, M.J. (eds.) IJCAI 2015, pp. 1558–1564. AAAI Press (2015)
Giese, H., Maximova, M., Sakizloglou, L., Schneider, S.: Metric temporal graph logic over typed attributed graphs. In: Hähnle, R., van der Aalst, W. (eds.) FASE 2019. LNCS, vol. 11424, pp. 282–298. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16722-6_16
Girard, J., Lafont, Y., Taylor, P.: Proofs and Types, Cambridge Tracts in Theoretical Computer Science, vol. 7. Cambridge University Press (1989)
Hazen, A.: Counterpart-theoretic semantics for modal logic. J. Philos. 76(6), 319–338 (1979)
Hodkinson, I., Wolter, F., Zakharyaschev, M.: Monodic fragments of first-order temporal logics: 2000–2001 A.D. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 1–23. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45653-8_1
Huang, S., Cleaveland, R.: A tableau construction for finite linear-time temporal logic. J. Logic Algebr. Meth. Program. 125, 100743 (2022)
Hublet, F., Basin, D., Krstić, S.: Real-time policy enforcement with metric first-order temporal logic. In: Atluri, V., Di Pietro, R., Jensen, C.D., Meng, W. (eds.) ESORICS 2022. LNCS, vol. 13555, pp. 211–232. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17146-8_11
Jeffrey, A.: LTL types FRP: linear-time temporal logic propositions as types, proofs as functional reactive programs. In: Claessen, K., Swamy, N. (eds.) PLPV 2012, pp. 49–60. ACM (2012)
Kokke, P., Swierstra, W.: Auto in Agda. In: Hinze, R., Voigtländer, J. (eds.) MPC 2015. LNCS, vol. 9129, pp. 276–301. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19797-5_14
Lewis, D.K.: Counterpart theory and quantified modal logic. J. Philos. 65(5), 113–126 (1968)
Lindblad, F., Benke, M.: A tool for automated theorem proving in Agda. In: Filliâtre, J.-C., Paulin-Mohring, C., Werner, B. (eds.) TYPES 2004. LNCS, vol. 3839, pp. 154–169. Springer, Heidelberg (2006). https://doi.org/10.1007/11617990_10
Marussy, K., Semeráth, O., Babikian, A.A., Varró, D.: A specification language for consistent model generation based on partial models. J. Object Technol. 19(3), 1–22 (2020)
Moura, L., Ullrich, S.: The lean 4 theorem prover and programming language. In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp. 625–635. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79876-5_37
Huerta, Y., Munive, J.J.: Relaxing safety for metric first-order temporal logic via dynamic free variables. In: Dang, T., Stolz, V. (eds.) RV 2022. LNCS, vol. 13498, pp. 45–66. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17196-3_3
Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283, pp. 67–104. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9_5
Norell, U.: Dependently typed programming in Agda. In: Kennedy, A., Ahmed, A. (eds.) TLDI 2009, pp. 1–2. ACM (2009)
O’Connor, L.: Applications of applicative proof search. In: Chapman, J., Swierstra, W. (eds.) TyDe@ICFP 2016, pp. 43–55. ACM (2016)
Poskitt, C.M., Plump, D.: Monadic second-order incorrectness logic for GP 2. J. Logic Algebr. Meth. Program. 130, 100825 (2023)
Schneider, J., Basin, D., Krstić, S., Traytel, D.: A formally verified monitor for metric first-order temporal logic. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp. 310–328. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32079-9_18
Schneider, J., Traytel, D.: Formalization of a monitoring algorithm for metric first-order temporal logic. Archive of Formal Proofs (2019)
Schneider, S., Maximova, M., Sakizloglou, L., Giese, H.: Formal testing of timed graph transformation systems using metric temporal graph logic. Int. J. Softw. Tools Technol. Transf. 23(3), 411–488 (2021). https://doi.org/10.1007/s10009-020-00585-w
Schneider, S., Sakizloglou, L., Maximova, M., Giese, H.: Optimistic and pessimistic on-the-fly analysis for metric temporal graph logic. In: Gadducci, F., Kehrer, T. (eds.) ICGT 2020. LNCS, vol. 12150, pp. 276–294. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51372-6_16
Smid, W., Rensink, A.: Class diagram restructuring with GROOVE. In: Gorp, P.V., Rose, L.M., Krause, C. (eds.) TTC 2013. EPTCS, vol. 135, pp. 83–87 (2013)
Sprenger, C.: A verified model checker for the modal \(\mu \)-calculus in Coq. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 167–183. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054171
Wulandari, G.S., Plump, D.: Verifying graph programs with monadic second-order logic. In: Gadducci, F., Kehrer, T. (eds.) ICGT 2021. LNCS, vol. 12741, pp. 240–261. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78946-6_13
Zambon, E., Rensink, A.: Recipes for coffee: Compositional construction of JAVA control flow graphs in GROOVE. In: Müller, P., Schaefer, I. (eds.) Principled Software Development. LNCS, pp. 305–323. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98047-8_19
Zanarini, D., Luna, C., Sierra, L.: Alternating-time temporal logic in the calculus of (Co)inductive constructions. In: Gheyi, R., Naumann, D. (eds.) SBMF 2012. LNCS, vol. 7498, pp. 210–225. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33296-8_16
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gadducci, F., Laretto, A., Trotta, D. (2023). Specification and Verification of a Linear-Time Temporal Logic for Graph Transformation. In: Fernández, M., Poskitt, C.M. (eds) Graph Transformation. ICGT 2023. Lecture Notes in Computer Science, vol 13961. Springer, Cham. https://doi.org/10.1007/978-3-031-36709-0_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-36709-0_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-36708-3
Online ISBN: 978-3-031-36709-0
eBook Packages: Computer ScienceComputer Science (R0)