Skip to main content

Specification and Verification of a Linear-Time Temporal Logic for Graph Transformation

  • Conference paper
  • First Online:
Graph Transformation (ICGT 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13961))

Included in the following conference series:

Abstract

We present a first-order linear-time temporal logic for reasoning about the evolution of directed graphs. Its semantics is based on the counterpart paradigm, thus allowing our logic to represent the creation, duplication, merging, and deletion of elements of a graph as well as how its topology changes over time. We then introduce a positive normal forms presentation, thus simplifying the actual process of verification. We provide the syntax and semantics of our logics with a computer-assisted formalisation using the proof assistant Agda, and we round up the paper by highlighting the crucial aspects of our formalisation and the practical use of quantified temporal logics in a constructive proof assistant.

Research partially supported by the Italian MIUR projects PRIN 2017FTXR7S “IT-MaTTerS” and 20228KXFN2 “STENDHAL” and by the University of Pisa project PRA_2022_99 “FM4HD”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baldan, P., Corradini, A., König, B., Lluch Lafuente, A.: A temporal graph logic for verification of graph transformation systems. In: Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409, pp. 1–20. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71998-4_1

    Chapter  Google Scholar 

  2. Belardinelli, F.: Quantified Modal Logic and the Ontology of Physical Objects. Ph.D. work, Scuola Normale Superiore of Pisa (2004–2005)

    Google Scholar 

  3. Blackburn, P., van Benthem, J., Wolter, F. (eds.): Handbook of Modal Logic, vol. 3. North Holland (2007)

    Google Scholar 

  4. Búr, M., Marussy, K., Meyer, B.H., Varró, D.: Worst-case execution time calculation for query-based monitors by witness generation. ACM Trans. Embed. Comput. Syst. 20(6), 1–36 (2021)

    Google Scholar 

  5. Bustan, D., Flaisher, A., Grumberg, O., Kupferman, O., Vardi, M.Y.: Regular vacuity. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 191–206. Springer, Heidelberg (2005). https://doi.org/10.1007/11560548_16

    Chapter  Google Scholar 

  6. Coq Development Team: The Coq Proof Assistant Reference Manual (2016)

    Google Scholar 

  7. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 30–45. Springer (2006)

    Google Scholar 

  8. Coupet-Grimal, S.: An axiomatization of linear temporal logic in the calculus of inductive constructions. J. Logic Comput. 13(6), 801–813 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inform. Comput. 85(1), 12–75 (1990)

    Google Scholar 

  10. Courcelle, B.: The monadic second-order logic of graphs. XII. Planar graphs and planar maps. Theor. Comput. Sci. 237(1), 1–32 (2000)

    Google Scholar 

  11. Danielsson, N.A.: Up-to techniques using sized types. In: POPL 2018, pp. 43:1–43:28. ACM (2018)

    Google Scholar 

  12. Dawar, A., Gardner, P., Ghelli, G.: Expressiveness and complexity of graph logic. Inf. Comput. 205(3), 263–310 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics, pp. 995–1072. Elsevier and MIT Press (1990)

    Google Scholar 

  14. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.-G.: A fully verified executable LTL model checker. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 463–478. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_31

    Chapter  Google Scholar 

  15. Franconi, E., Toman, D.: Fixpoint extensions of temporal description logics. In: Calcanese, D., De Giacomo, G., Franconi, E. (eds.) DL 2003. CEUR Workshop Proceedings, vol. 81 (2003)

    Google Scholar 

  16. Gadducci, F., Lluch-Lafuente, A., Vandin, A.: Counterpart semantics for a second-order \(\mu \)-calculus. Fundamenta Informaticae 118(1–2), 177–205 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gadducci, F., Trotta, D.: A presheaf semantics for quantified temporal logics. CoRR abs/2111.03855 (2021)

    Google Scholar 

  18. Gadducci, F., Laretto, A., Trotta, D.: Specification and verification of a linear-time temporal logic for graph transformation. CoRR abs/2305.03832 (2023)

    Google Scholar 

  19. Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling and analysis using GROOVE. Int. J. Softw. Tools Technol. Trans. 14(1), 15–40 (2012)

    Article  Google Scholar 

  20. Ghilardi, S., Meloni, G.: Modal and tense predicate logic: models in presheaves and categorical conceptualization. In: Borceux, F. (ed.) Categorical Algebra and its Applications. LNM, vol. 1348, pp. 130–142. Springer (1988)

    Google Scholar 

  21. Ghilardi, S., Meloni, G.: Relational and partial variable sets and basic predicate logic. J. Symbol. Logic 61(3), 843–872 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Giacomo, G.D., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. In: Yang, Q., Wooldridge, M.J. (eds.) IJCAI 2015, pp. 1558–1564. AAAI Press (2015)

    Google Scholar 

  23. Giese, H., Maximova, M., Sakizloglou, L., Schneider, S.: Metric temporal graph logic over typed attributed graphs. In: Hähnle, R., van der Aalst, W. (eds.) FASE 2019. LNCS, vol. 11424, pp. 282–298. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16722-6_16

    Chapter  Google Scholar 

  24. Girard, J., Lafont, Y., Taylor, P.: Proofs and Types, Cambridge Tracts in Theoretical Computer Science, vol. 7. Cambridge University Press (1989)

    Google Scholar 

  25. Hazen, A.: Counterpart-theoretic semantics for modal logic. J. Philos. 76(6), 319–338 (1979)

    Article  Google Scholar 

  26. Hodkinson, I., Wolter, F., Zakharyaschev, M.: Monodic fragments of first-order temporal logics: 2000–2001 A.D. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 1–23. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45653-8_1

    Chapter  Google Scholar 

  27. Huang, S., Cleaveland, R.: A tableau construction for finite linear-time temporal logic. J. Logic Algebr. Meth. Program. 125, 100743 (2022)

    Google Scholar 

  28. Hublet, F., Basin, D., Krstić, S.: Real-time policy enforcement with metric first-order temporal logic. In: Atluri, V., Di Pietro, R., Jensen, C.D., Meng, W. (eds.) ESORICS 2022. LNCS, vol. 13555, pp. 211–232. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17146-8_11

  29. Jeffrey, A.: LTL types FRP: linear-time temporal logic propositions as types, proofs as functional reactive programs. In: Claessen, K., Swamy, N. (eds.) PLPV 2012, pp. 49–60. ACM (2012)

    Google Scholar 

  30. Kokke, P., Swierstra, W.: Auto in Agda. In: Hinze, R., Voigtländer, J. (eds.) MPC 2015. LNCS, vol. 9129, pp. 276–301. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19797-5_14

    Chapter  Google Scholar 

  31. Lewis, D.K.: Counterpart theory and quantified modal logic. J. Philos. 65(5), 113–126 (1968)

    Article  Google Scholar 

  32. Lindblad, F., Benke, M.: A tool for automated theorem proving in Agda. In: Filliâtre, J.-C., Paulin-Mohring, C., Werner, B. (eds.) TYPES 2004. LNCS, vol. 3839, pp. 154–169. Springer, Heidelberg (2006). https://doi.org/10.1007/11617990_10

    Chapter  MATH  Google Scholar 

  33. Marussy, K., Semeráth, O., Babikian, A.A., Varró, D.: A specification language for consistent model generation based on partial models. J. Object Technol. 19(3), 1–22 (2020)

    Article  Google Scholar 

  34. Moura, L., Ullrich, S.: The lean 4 theorem prover and programming language. In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp. 625–635. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79876-5_37

    Chapter  Google Scholar 

  35. Huerta, Y., Munive, J.J.: Relaxing safety for metric first-order temporal logic via dynamic free variables. In: Dang, T., Stolz, V. (eds.) RV 2022. LNCS, vol. 13498, pp. 45–66. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17196-3_3

  36. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283, pp. 67–104. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9_5

  37. Norell, U.: Dependently typed programming in Agda. In: Kennedy, A., Ahmed, A. (eds.) TLDI 2009, pp. 1–2. ACM (2009)

    Google Scholar 

  38. O’Connor, L.: Applications of applicative proof search. In: Chapman, J., Swierstra, W. (eds.) TyDe@ICFP 2016, pp. 43–55. ACM (2016)

    Google Scholar 

  39. Poskitt, C.M., Plump, D.: Monadic second-order incorrectness logic for GP 2. J. Logic Algebr. Meth. Program. 130, 100825 (2023)

    Google Scholar 

  40. Schneider, J., Basin, D., Krstić, S., Traytel, D.: A formally verified monitor for metric first-order temporal logic. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp. 310–328. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32079-9_18

    Chapter  Google Scholar 

  41. Schneider, J., Traytel, D.: Formalization of a monitoring algorithm for metric first-order temporal logic. Archive of Formal Proofs (2019)

    Google Scholar 

  42. Schneider, S., Maximova, M., Sakizloglou, L., Giese, H.: Formal testing of timed graph transformation systems using metric temporal graph logic. Int. J. Softw. Tools Technol. Transf. 23(3), 411–488 (2021). https://doi.org/10.1007/s10009-020-00585-w

    Article  Google Scholar 

  43. Schneider, S., Sakizloglou, L., Maximova, M., Giese, H.: Optimistic and pessimistic on-the-fly analysis for metric temporal graph logic. In: Gadducci, F., Kehrer, T. (eds.) ICGT 2020. LNCS, vol. 12150, pp. 276–294. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51372-6_16

    Chapter  MATH  Google Scholar 

  44. Smid, W., Rensink, A.: Class diagram restructuring with GROOVE. In: Gorp, P.V., Rose, L.M., Krause, C. (eds.) TTC 2013. EPTCS, vol. 135, pp. 83–87 (2013)

    Google Scholar 

  45. Sprenger, C.: A verified model checker for the modal \(\mu \)-calculus in Coq. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 167–183. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054171

    Chapter  Google Scholar 

  46. Wulandari, G.S., Plump, D.: Verifying graph programs with monadic second-order logic. In: Gadducci, F., Kehrer, T. (eds.) ICGT 2021. LNCS, vol. 12741, pp. 240–261. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78946-6_13

    Chapter  MATH  Google Scholar 

  47. Zambon, E., Rensink, A.: Recipes for coffee: Compositional construction of JAVA control flow graphs in GROOVE. In: Müller, P., Schaefer, I. (eds.) Principled Software Development. LNCS, pp. 305–323. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98047-8_19

  48. Zanarini, D., Luna, C., Sierra, L.: Alternating-time temporal logic in the calculus of (Co)inductive constructions. In: Gheyi, R., Naumann, D. (eds.) SBMF 2012. LNCS, vol. 7498, pp. 210–225. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33296-8_16

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Laretto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gadducci, F., Laretto, A., Trotta, D. (2023). Specification and Verification of a Linear-Time Temporal Logic for Graph Transformation. In: Fernández, M., Poskitt, C.M. (eds) Graph Transformation. ICGT 2023. Lecture Notes in Computer Science, vol 13961. Springer, Cham. https://doi.org/10.1007/978-3-031-36709-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36709-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36708-3

  • Online ISBN: 978-3-031-36709-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics