Skip to main content
  • 306 Accesses

Abstract

The history of artificial intelligence is a long one, even going back to the ancient Greeks who sought to mimic human intelligence in a machine, the Automaton. However, much of what we consider to be the story of artificial intelligence encompasses only the last 75 years, when the field of research and practice of artificial intelligence was named as such by the giants in the discipline at the time. This chapter reviews this history, focusing on deductive inference, rather than machine learning; it begins with the proposal for a summer institute on artificial intelligence in 1955, through the development of deductive, rule-based approaches to machine-driven inference, including methods for how these approaches were realized on computers. These approaches, realized as knowledge-based systems, found their manifestation a number of domains, including medical decision making, clinical education, population health surveillance, data representation and integration, and clinical trial support. This history provides the reader with an “family tree” of sorts that shows the evolution of artificial intelligence through the past seven decades and its application to medicine and public health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCarthy J, Minsky ML, Rochester N, Shannon CE. A proposal for the dartmouth summer research project on artificial intelligence. AI Mag. 2006;27(4):12–4.

    Google Scholar 

  2. Gugerty L. Newell and Simon’s logic theorist: historical background and impact on cognitive modeling. In: Proceedings of the human factors and ergonomics society annual meeting; 2006. p. 880–84.

    Google Scholar 

  3. Goodall A. Guide to expert systems. Oxford: Learned Information; 1985.

    Google Scholar 

  4. Lauritsen SM, Kristensen M, Olsen MV, et al. Explainable artificial intelligence model to predict acute critical illness from electronic health records. Nat Commun. 2020;11(1):3852.

    Article  Google Scholar 

  5. Cooper G. Current research directions in the development of expert systems based on belief networks. Appl Stoch Models Data Anal. 1989;5:39–52.

    Article  MATH  Google Scholar 

  6. de Dombal FT, Leaper DJ, Staniland JR, McCann AP, Horrocks JC. Computer-aided diagnosis of acute abdominal pain. Br Med J. 1972;2(5804):9–13.

    Article  Google Scholar 

  7. Buchanan BG, Shortliffe EH. Rule based expert systems: The Mycin experiments of the Stanford heuristic programming project. Reading MA: Addison Wesley; 1984.

    Google Scholar 

  8. Holland JH. Escaping brittleness: the possibilities of general-purpose learning algorithms applied to parallel rule-based systems. In: Machine learning: an artificial intelligence approach San Francisco. San Francisco: Morgan-Kaufman; 1986.

    Google Scholar 

  9. Miller RA, Pople HEJ, Myers JD. Internist-1, an experimental computer-based diagnostic consultant for general internal medicine. N Engl J Med. 1982;307(8):468–76.

    Article  Google Scholar 

  10. Banks G. Artificial intelligence in medical diagnosis: the INTERNIST/CADUCEUS approach. Crit Rev Med Inform. 1986;1(1):23–54.

    MathSciNet  Google Scholar 

  11. Miller RA, Masarie FEJ. Use of the Quick Medical Reference (QMR) program as a tool for medical education. Methods Inf Med. 1989;28(4):340–5.

    Article  Google Scholar 

  12. Aikins JS, Kunz JC, Shortliffe EH, Fallat RJ. PUFF: an expert system for interpretation of pulmonary function data. Comput Biomed Res. 1983;16(3):199–208.

    Article  Google Scholar 

  13. Safran C, Rind DM, Davis RB, et al. A clinical trial of a knowledge-based medical record. Medinfo MEDINFO. 1995;8(Pt 2):1076–80.

    Google Scholar 

  14. Shellum JL, Freimuth RR, Peters SG, et al. Knowledge as a service at the point of care. In: AMIA annual symposium proceedings; 2016. p. 1139–48.

    Google Scholar 

  15. Hripcsak G. Writing Arden syntax medical logic modules. Comput Biol Med. 1994;24(5):331–63.

    Article  Google Scholar 

  16. Poikonen J. Arden syntax: the emerging standard language for representing medical knowledge in computer systems. Am J Health-Syst Pharm AJHP Off J Am Soc Health-Syst Pharm. 1997;54(3):281–4.

    Article  Google Scholar 

  17. Johnson KB, Feldman MJ. Medical informatics and paediatrics. Decision-support systems. Arch Pediatr Adolesc Med. 1995;149(12):1371–80.

    Article  Google Scholar 

  18. Anand V, Biondich PG, Liu G, Rosenman M, Downs SM. Child health improvement through computer automation: the CHICA system. Stud Health Technol Inform. 2004;107(Pt 1):187–91.

    Google Scholar 

  19. Bronzino JD, Morelli RA, Goethe JW. OVERSEER: a prototype expert system for monitoring drug treatment in the psychiatric clinic. IEEE Trans Biomed Eng. 1989;36(5):533–40.

    Article  Google Scholar 

  20. Chizzali-Bonfadin C, Adlassnig KP, Koller W. MONI: an intelligent database and monitoring system for surveillance of nosocomial infections. Medinfo MEDINFO. 1995;8(Pt 2):1684.

    Google Scholar 

  21. Pestotnik SL, Evans RS, Burke JP, Gardner RM, Classen DC. Therapeutic antibiotic monitoring: surveillance using a computerized expert system. Am J Med. 1990;88(1):43–8.

    Article  Google Scholar 

  22. Evans RS, Classen DC, Pestotnik SL, Clemmer TP, Weaver LK, Burke JP. A decision support tool for antibiotic therapy. Proc Symp Comput Appl Med Care 1995;651–55.

    Google Scholar 

  23. Pittet D, Safran E, Harbarth S, et al. Automatic alerts for methicillin-resistant Staphylococcus aureus surveillance and control: role of a hospital information system. Infect Control Hosp Epidemiol. 1996;17(8):496–502.

    Article  Google Scholar 

  24. Gorges M, Winton P, Koval V, et al. An evaluation of an expert system for detecting critical events during anesthesia in a human patient simulator: a prospective randomized controlled study. Anesth Analg. 2013;117(2):380–91.

    Article  Google Scholar 

  25. Herasevich V, Kor DJ, Subramanian A, Pickering BW. Connecting the dots: rule-based decision support systems in the modern EMR era. J Clin Monit Comput. 2013;27(4):443–8.

    Article  Google Scholar 

  26. Lau F. A clinical decision support system prototype for cardiovascular intensive care. Int J Clin Monit Comput. 1994;11(3):157–69.

    Article  Google Scholar 

  27. Seitinger A, Rappelsberger A, Leitich H, Binder M, Adlassnig K-P. Executable medical guidelines with Arden Syntax-Applications in dermatology and obstetrics. Artif Intell Med. 2018;92:71–81.

    Article  Google Scholar 

  28. Goulding EH, Dopke CA, Michaels T, et al. A smartphone-based self-management intervention for individuals with bipolar disorder (LiveWell): protocol development for an expert system to provide adaptive user feedback. JMIR Form Res. 2021;5(12): e32932.

    Article  Google Scholar 

  29. Seto E, Leonard KJ, Cafazzo JA, Barnsley J, Masino C, Ross HJ. Developing healthcare rule-based expert systems: case study of a heart failure telemonitoring system. Int J Med Inf. 2012;81(8):556–65.

    Article  Google Scholar 

  30. Katalenich B, Shi L, Liu S, et al. Evaluation of a remote monitoring system for diabetes control. Clin Ther. 2015;37(6):1216–25.

    Article  Google Scholar 

  31. Bauer MA, Berleant D. Usability survey of biomedical question answering systems. Hum Genomics. 2012;6(101202210):17.

    Article  Google Scholar 

  32. Siegel JDPTA. Computerized diagnosis: implications for clinical education. Med Educ. 1988;22(1):47–54.

    Article  Google Scholar 

  33. Skinner C, Bormanis J. A multipurpose teaching workstation using expert systems, CD ROM and interactive laserdisc. Proc Annu Symp Comput Appl Med Care 1992;831–32.

    Google Scholar 

  34. Wolfram DA. An appraisal of INTERNIST-I. Artif Intell Med. 1995;7(2):93–116.

    Article  Google Scholar 

  35. King AJ, Cooper GF, Hochheiser H, Clermont G, Visweswaran S. Development and preliminary evaluation of a prototype of a learning electronic medical record system. In: AMIA annual symposium proceedings, vol. 2015, issue 101209213; 2015. p. 1967–75.

    Google Scholar 

  36. Canade A, Palladino F, Pitzalis G, Campioni P, Marano P. Web-based radiology: a future to be created. Rays. 2003;28(1):109–17.

    Google Scholar 

  37. Molino G, Ripa Di Meana V, Torchio M, Console L, Torasso P. Educational applications of a knowledge-based expert system for medical decision making in hepatology. Ital J Gastroenterol 1990;22(2):97–104.

    Google Scholar 

  38. Console L, Molino G, Ripa di Meana V, Torasso P. LIED-liver: Information, education and diagnosis. Methods Inf Med 1992;31(4):284–97.

    Google Scholar 

  39. Cutrer WB, Castro D, Roy KM, Turner TL. Use of an expert concept map as an advance organizer to improve understanding of respiratory failure. Med Teach. 2011;33(12):1018–26.

    Article  Google Scholar 

  40. do Amaral MB, Satomura Y, Honda M, Sato T. A psychiatric diagnostic system integrating probabilistic and categorical reasoning. Methods Inf Med 1995;34(3):232–43.

    Google Scholar 

  41. Fontaine D, Le Beux P, Riou C, Jacquelinet C. An intelligent computer-assisted instruction system for clinical case teaching. Methods Inf Med. 1994;33(4):433–45.

    Article  Google Scholar 

  42. Heermann LK, Thompson CB. Prototype expert system to assist with the stabilization of neonates prior to transport. In: Proceedings of the AMIA annual fall symposium, vol. 9617342. American Medical Informatics Association; 1997. p. 213–7.

    Google Scholar 

  43. LeFiore JL, Anderson M. Effectiveness of 2 methods to teach and evaluate new content to neonatal transport personnel using high-fidelity simulation. J Perinat Neonatal Nurs. 2008;22(4):319–28.

    Article  Google Scholar 

  44. Junkes-Cunha M, Cardozo G, Boos CF, de Azevedo F. Implementation of expert systems to support the functional evaluation of stand-to-sit activity. Biomed Eng Online. 2014;13(101147518):98.

    Article  Google Scholar 

  45. Koutsojannis C, Lithari C, Hatzilgeroudis I. Managing urinary incontinence through hand-held real-time decision support aid. Comput Methods Programs Biomed. 2012;107(1):84–9.

    Article  Google Scholar 

  46. Levy M, Ferrand P, Chirat V. SESAM-DIABETE, an expert system for insulin-requiring diabetic patient education. Comput Biomed Res Int J. 1989;22(5):442–53.

    Article  Google Scholar 

  47. Banjar HR, Alkhatabi H, Alganmi N, Almouhana GI. Prototype development of an expert system of computerized clinical guidelines for COVID-19 diagnosis and management in Saudi Arabia. Int J Environ Res Public Health. 2020;17(21).

    Google Scholar 

  48. Comesana-Campos A, Casal-Guisande M, Cerqueiro-Pequeno J, Bouza-Rodriguez JB. A methodology based on expert systems for the early detection and prevention of hypoxemic clinical cases. Int J Environ Res Public Health 2020;17(22).

    Google Scholar 

  49. Feng R, Hu Q, Jiang Y. Unknown disease outbreaks detection: a pilot study on feature-based knowledge representation and reasoning model. Front Public Health. 2021;9(101616579): 683855.

    Article  Google Scholar 

  50. Staudt A, Freyer-Adam J, Meyer C, Bischof G, John U, Baumann S. The Moderating effect of educational background on the efficacy of a computer-based brief intervention addressing the full spectrum of alcohol use: randomized controlled trial. JMIR Public Health Surveill. 2022;8(6): e33345.

    Article  Google Scholar 

  51. Gundlapalli AV, Olson J, Smith SP, Baza M, et al. Hospital electronic medical record-based public health surveillance system deployed during the 2002 Winter Olympic Games. Am J Infect Control. 2007;35(3):163–71.

    Article  Google Scholar 

  52. Tamang S, Kopec D, McCoffie T, Levy K. Developing health surveillance networks: an adaptive approach. Stud Health Technol Inform 2006;121(ck1, 9214582):74–85.

    Google Scholar 

  53. Hadley TD, Pettit RW, Malik T, Khoei AA, Salihu HM. Artificial intelligence in global health—A framework and strategy for adoption and sustainability. Int J MCH AIDS. 2020;9(1):121–7.

    Article  Google Scholar 

  54. Achour SL, Dojat M, Rieux C, Bierling P, Lepage E. A UMLS-based knowledge acquisition tool for rule-based clinical decision support system development. J Am Med Inform Assoc. 2001;8(4):351–60.

    Article  Google Scholar 

  55. Ahmed Benyahia A, Hajjam A, Andres E, Hajjam M, Hilaire V. Including other system in E-Care telemonitoring platform. Stud Health Technol Inform 190(ck1, 9214582):115–17.

    Google Scholar 

  56. Bellos C, Papadopoulos A, Rosso R, Fotiadis DI. Clinical validation of the CHRONIOUS wearable system in patients with chronic disease. In: Annual international conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. 2013. p. 7084–87.

    Google Scholar 

  57. Bertaud Gounot V, DOnfack V, Lasbleiz J, Bourde A, Duvauferrier R. Creating an ontology driven rules base for an expert system for medical diagnosis. Stud Health Technol Inform. 169(ck1, 9214582):714–18.

    Google Scholar 

  58. Cheah YN, Abidi SS. Health expert’s tacit knowledge acquisition and representation using specialised healthcare scenarios. Stud Health Technol Inform. 2000;77(ck1, 9214582):837–41.

    Google Scholar 

  59. Cheah YN, Abidi SS. Healthcare knowledge acquisition: An ontology-based approach using the extensible markup language (XML). Stud Health Technol Inform. 2000;77(ck1, 9214582):827–31.

    Google Scholar 

  60. De Clercq E, Moreels S, Bossuyt N, Vanthomme K, Goderis G, Van Casteren V. Routinely-collected general practice data from the electronic patient record and general practitioner active electronic questioning method: a comparative study. Stud Health Technol Inform. 2013;192(ck1, 9214582):510–14.

    Google Scholar 

  61. Iglesias N, Juarez JM, Campos M. Comprehensive analysis of rule formalisms to represent clinical guidelines: Selection criteria and case study on antibiotic clinical guidelines. Artif Intell Med. 2020;103(bup, 8915031):101741.

    Google Scholar 

  62. Moskovitch RSY. A multiple-ontology customizable search interface for retrieval of clinical guidelines. Stud Health Technol Inform. 2004;101(ck1, 9214582):127–31.

    Google Scholar 

  63. Shalom E, Shahar Y, Taieb-Maimon M, Martins SB, Vaszar LT, et al. Ability of expert physicians to structure clinical guidelines: Reality versus perception. J Eval Clin Pract. 2009;15(6):1043–53.

    Article  Google Scholar 

  64. Gaspari M, Roveda G, Scandellari C, Stecchi S. An expert system for the evaluation of EDSS in multiple sclerosis. Artif Intell Med. 2002;25(2):187–210.

    Article  Google Scholar 

  65. Maurice P, Dhombres F, Blondiaux E, et al. Towards ontology-based decision support systems for complex ultrasound diagnosis in obstetrics and gynecology. J Gynecol Obstet Hum Reprod. 2017;46(5):423–9.

    Article  Google Scholar 

  66. Dassen WR, Mulleneers R, Frank HL. The value of an expert system in performing clinical drug trials. Comput Biol Med. 1991;21(4):193–8.

    Article  Google Scholar 

  67. Fink E, Kokku PK, Nikiforou S, Hall LO, Goldgof DB, Krischer JP. Selection of patients for clinical trials: an interactive web-based system. Artif Intell Med. 2004;31(3):241–54.

    Article  Google Scholar 

  68. Papaconstantinou C, Theocharous G, Mahadevan S. An expert system for assigning patients into clinical trials based on Bayesian networks. J Med Syst. 1998;22(3):189–202.

    Article  Google Scholar 

  69. Musen MA, Rohn JA, Fagan LM, Shortliffe EH. Knowledge engineering for a clinical trial advice system: uncovering errors in protocol specification. Bull Cancer (Paris). 1987;74(3):291–6.

    Google Scholar 

  70. Wyatt JC, Altman DG, Healthfield HA, Pantin CF. Development of Design-a-Trial, a knowledge-based critiquing system for authors of clinical trial protocols. Comput Methods Programs Biomed. 1994;43(3–4):283–91.

    Article  Google Scholar 

  71. Ash N, Ogunyemi O, Zeng Q, Ohno-Machado L. Finding appropriate clinical trials: Evaluating encoded eligibility criteria with incomplete data. In: Proceedings. AMIA symposium; 2001. p. 27–31.

    Google Scholar 

  72. Gore ME, Bellmunt J, Eisen T, Escudier B, et al. Evaluation of treatment options for patients with advanced renal cell carcinoma: assessment of appropriateness, using the validated semi-quantitative RAND Corporation/University of California, Los Angeles methodology. Eur J Cancer. 2012;48(7):1038–47.

    Article  Google Scholar 

  73. Jonnalagadda SR, Adupa AK, Garg RP, Corona-Cox J, Shah SJ. Text mining of the electronic health record: an information extraction approach for automated identification and subphenotyping of HFpEF patients for clinical trials. J Cardiovasc Transl Res. 2017;10(3):313–21.

    Article  Google Scholar 

  74. Long JM, Slagle JR, Leon AS, et al. An example of expert systems applied to clinical trials: analysis of serial graded exercise ECG test data. Control Clin Trials. 1987;8(2):136–45.

    Article  Google Scholar 

  75. Chen L, Gu Y, Ji X, et al. Clinical trial cohort selection based on multi-level rule-based natural language processing system. J Am Med Inform Assoc. 2019;26(11):1218–26.

    Article  Google Scholar 

  76. Malogolowkin MH, Horowitz RS, Ortega JA, et al. Tracing expert thinking in clinical trial design. Comput Biomed Res Int J. 1989;22(2):190–208.

    Article  Google Scholar 

  77. Haag U. Knowledge representation for computer-aided planning of controlled clinical trials: The PATriCIa project. Methods Inf Med. 36(3):172–78.

    Google Scholar 

  78. Barrett JS, Nicholas T, Azer K, Corrigan BW. Role of disease progression models in drug development. Pharm Res. 2022;39(8):1803–15.

    Article  Google Scholar 

  79. Clarke LP, Velthuizen RP, Clark M, Gavira J, et al. MRI measurement of brain tumor response: comparison of visual metric and automatic segmentation. Magn Reson Imaging. 1998;16(3):271–9.

    Article  Google Scholar 

  80. Haupt F, Berfing G, Namazian A, et al. Expert system for bone scan interpretation improves progression assessment in bone metastatic prostate cancer. Adv Ther. 2017;34(4):986–94.

    Article  Google Scholar 

  81. Dearden JC. In silico prediction of drug toxicity. J Comput Aided Mol Des. 2003;17(2–4):119–27.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Holmes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Holmes, J.H. (2023). Artificial Intelligence. In: Asselbergs, F.W., Denaxas, S., Oberski, D.L., Moore, J.H. (eds) Clinical Applications of Artificial Intelligence in Real-World Data. Springer, Cham. https://doi.org/10.1007/978-3-031-36678-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36678-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36677-2

  • Online ISBN: 978-3-031-36678-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics