Skip to main content

Structure-Agnostic Gait Cycle Segmentation for In-Home Gait Health Monitoring Through Footstep-Induced Structural Vibrations

  • Conference paper
  • First Online:
Dynamics of Civil Structures, Volume 2 (SEM 2023)

Abstract

This chapter aims to characterize the structural vibrations induced by footsteps to segment a sequence of gait patterns into critical gait phases (including stance phase and swing phase) for in-home gait health monitoring across various floor structures. Gait cycle segmentation is an essential step in quantitative gait assessments for early diagnosis and progressive tracking of neuroskeletal and neuromuscular disorders. Especially, in-home monitoring of peoples’ gait health is beneficial for low-income families and those who have limited access to medical services. Existing studies have adopted cameras, wearable devices, and force plates/pressure mats to segment gait cycles, but they have operational requirements such as direct line-of-sight, carrying devices, and dense deployment, which are not practical for continuous monitoring at an individual’s home. In this chapter, we develop a gait cycle segmentation framework through footstep-induced structural vibrations. The primary research challenges are the complex interplay of the: (1) gait phases and (2) structural properties with the vibration signals. First, gait involves a continuous sequence of multiple types of motions, making it challenging to separate them. Second, people’s living spaces have distinct types of floor structures, leading to difficulty of adapting our framework to multiple structure types. To address the first challenge, we leverage the main insight that human motions at the onset of each gait phase (e.g., heel strike and toe-off) involve unique types of excitation force (e.g., impulsive vs. friction forces). These forces incur peaks at distinct frequency ranges in the responses of the structure. Therefore, we separate gait phases by analyzing the structural responses over various frequency ranges. Second, to make our framework structure-agnostic, we formulate the structural influence on the vibration signals and extract structure-dependent features to represent such influence. Overall, our framework first identifies the structure-dependent dominant frequency ranges for each structure through a time–frequency-domain analysis and extracts vibration signals within these frequency ranges. It then detects time-domain peaks within each structure-dependent frequency range to identify the onset of gait phases. We evaluate our method on two different structures in a real-world setting and achieved consistent results with only a 5% average error in detecting various gait phases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davis, B.T., Bryant, B.I., Fritz, S.L., Handlery, R., Flach, A., Hirth, V.A.: Measuring gait parameters from structural vibrations. Measurement 195, 111076 (2022)

    Article  Google Scholar 

  2. Kessler, E., Sriram Malladi, V.V.N., Tarazaga, P.A.: Vibration-based gait analysis via instrumented buildings. Int. J. Distrib. Sensor Netw. 15(10), 1550147719881608 (2019)

    Article  Google Scholar 

  3. Dong, Y., Fagert, J., Zhang, P., Noh, H.Y.: Stranger detection and occupant identification using structural vibrations. In: European Workshop on Structural Health Monitoring, pp. 905–914. Springer, Berlin (2023)

    Google Scholar 

  4. Fagert, J., Mirshekari, M., Pan, S., Zhang, P., Noh, H.Y.: Characterizing left-right gait balance using footstep-induced structural vibrations. In: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2017, vol. 10168, pp. 357–365. SPIE, France (2017)

    Google Scholar 

  5. Dong, Y., Zou, J.J., Liu, J., Fagert, J., Mirshekari, M., Lowes, L., Iammarino, M., Zhang, P., Noh, H.Y.: MD-Vibe: Physics-informed analysis of patient-induced structural vibration data for monitoring gait health in individuals with muscular dystrophy. In: Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers, pp. 525–531 (2020)

    Google Scholar 

  6. Pan, S., Berges, M., Rodakowski, J., Zhang, P., Noh, H.Y.: Fine-grained recognition of activities of daily living through structural vibration and electrical sensing. In: Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, BuildSys ‘19, pp. 149–158, New York, NY. Association for Computing Machinery, New York (2019)

    Google Scholar 

  7. Fagert, J., Bonde, A., Srinidhi, S., Hamilton, S., Zhang, P., Noh, H.Y.: Clean vibes: hand washing monitoring using structural vibration sensing. ACM Trans. Comput. Healthcare 3(3), 1–25 (2022)

    Article  Google Scholar 

  8. Emery, A.E.H.: Population frequencies of inherited neuromuscular diseases–a world survey. Neuromuscul. Dis. 1(1), 19–29 (1991)

    Article  Google Scholar 

  9. Mehta, K.M., Yeo, G.W.: Systematic review of dementia prevalence and incidence in United States race/ethnic populations. Alzheimer’s Dementia 13(1), 72–83 (2017)

    Article  Google Scholar 

  10. Brown, R.C., Lockwood, A.H., Sonawane, B.R.: Neurodegenerative diseases: an overview of environmental risk factors. Environ. Health Perspect. 113(9), 1250–1256 (2005)

    Article  Google Scholar 

  11. Cicirelli, G., Impedovo, D., Dentamaro, V., Marani, R., Pirlo, G., D’Orazio, T.R.: Human gait analysis in neurodegenerative diseases: a review. IEEE J. Biomed. Health Informat. 26(1), 229–242 (2021)

    Article  Google Scholar 

  12. Finkelstein, S.M., Speedie, S.M., Potthoff, S.: Home telehealth improves clinical outcomes at lower cost for home healthcare. Telemed. J. e-Health 12(2), 128–136 (2006)

    Article  Google Scholar 

  13. Naylor, K.B., Tootoo, J., Yakusheva, O., Shipman, S.A., Bynum, J.P., Davis, M.A.: Geographic variation in spatial accessibility of US healthcare providers. PLOS One 14(4), e0215016 (2019)

    Article  Google Scholar 

  14. Andrews, J.G., Davis, M.F., Meaney, F.J.: Correlates of care for young men with Duchenne and Becker muscular dystrophy. Muscle Nerve 49(1), 21–25 (2014)

    Article  Google Scholar 

  15. Whittle, M.W.: Gait Analysis: An Introduction. Butterworth-Heinemann, Oxford (2014)

    Google Scholar 

  16. Stone, E.E., Skubic, M.: Capturing habitual, in-home gait parameter trends using an inexpensive depth camera. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5106–5109. IEEE, Piscataway (2012)

    Google Scholar 

  17. De Rossi, S.M., Crea, S., Donati, M., Reberšek, P., Novak, D., Vitiello, N., Lenzi, T., Podobnik, J., Munih, M., Carrozza, M.C.: Gait segmentation using bipedal foot pressure patterns. In: 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 361–366. IEEE, Piscataway (2012)

    Google Scholar 

  18. Mohammed, S., Same, A., Oukhellou, L., Kong, K., Huo, W., Amirat, Y.: Recognition of gait cycle phases using wearable sensors. Robot. Auton. Syst. 75, 50–59 (2016)

    Article  Google Scholar 

  19. Agostini, V., Balestra, G., Knaflitz, M.: Segmentation and classification of gait cycles. IEEE Trans. Neural Syst. Rehabil. Eng. 22(5), 946–952 (2013)

    Article  Google Scholar 

  20. Dong, Y., Liu, J., Noh, H.Y.: GaitVibe+: Enhancing structural vibration-based footstep localization using temporary cameras for in-home gait analysis. In: Proceedings of the 4th ACM Workshop on Continual and Multimodal Learning for Internet of Things (CML-IOT), New York, NY. Association for Computing Machinery, New York (2022)

    Google Scholar 

  21. Fagert, J., Mirshekari, M., Pan, S., Zhang, P., Noh, H.Y.: Structural property guided gait parameter estimation using footstep-induced floor vibrations. In: Dynamics of Civil Structures, vol. 2, pp. 191–194. Springer, Berlin (2020)

    Google Scholar 

  22. Pan, S., Ramirez, C.G., Mirshekari, M., Fagert, J., Chung, A.J., Hu, C.C., Shen, J.P., Noh, H.Y., Zhang, P.: SurfaceVibe: Vibration-based tap & swipe tracking on ubiquitous surfaces. In: 2017 16th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), pp. 197–208 (2017)

    Google Scholar 

  23. Persson, B.N.J.: Sliding Friction: Physical Principles and Applications. Springer Science & Business Media, Berlin (2013)

    MATH  Google Scholar 

  24. Whittle, M.W.: Generation and attenuation of transient impulsive forces beneath the foot: a review. Gait Posture 10(3), 264–275 (1999)

    Article  Google Scholar 

  25. Hahm, K.S., Anthony, B.W.: In-home health monitoring using floor-based gait tracking. Int. Things 19, 100541 (2022)

    Article  Google Scholar 

  26. Kharb, A., Saini, V., Jain, Y.K., Dhiman, S.: A review of gait cycle and its parameters. IJCEM Int. J. Comput. Eng. Manag. 13, 78–83 (2011)

    Google Scholar 

  27. Tugui, R.D., Antonescu, D.: Cerebral palsy gait, clinical importance. Maedica 8(4), 388 (2013)

    Google Scholar 

  28. Mirshekari, M., Fagert, J., Pan, S., Zhang, P., Noh, H.Y.: Step-level occupant detection across different structures through footstep-induced floor vibration using model transfer. J. Eng. Mech. 146(3), 04019137 (2020)

    Article  Google Scholar 

  29. Zhang, Y., Zhizhang, H., Susu, X., Pan, S.: AutoQual: task-oriented structural vibration sensing quality assessment leveraging co-located mobile sensing context. CCF Trans. Pervasive Comput. Interact. 3(4), 378–396 (2021)

    Article  Google Scholar 

  30. Dong, Y., Zhu, J., Noh, H.Y.: Re-vibe: Vibration-based indoor person re-identification through cross-structure optimal transport. In: Proceedings of the 1st ACM Workshop on the Future of Work, Workplaces, and Smart Buildings (FoWSB’22), New York, NY. Association for Computing Machinery, New York (2022)

    Google Scholar 

  31. Caprani, Colin C., Ahmadi, Ehsan: Formulation of human-structure interaction system models for vertical vibration. Journal of Sound and Vibration 377, 346–367 (2016)

    Google Scholar 

  32. Racic, V., Pavic, A., Brownjohn, J.M.W.: Experimental identification and analytical modelling of human walking forces: literature review. J. Sound Vibrat. 326(1–2), 1–49 (2009)

    Article  Google Scholar 

  33. Oppenheim, A.V., Buck, J., Daniel, M., Willsky, A.S., Nawab, S.H., Singer, A.: Signals & Systems. Pearson Educación, London (1997)

    Google Scholar 

  34. Chopra, A.K.: Dynamics of Structures. Pearson Education India, Noida (2007)

    Google Scholar 

Download references

Acknowledgements

This work was funded by the U.S. National Science Foundation (under grant number NSF-CMMI-2026699).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiwen Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dong, Y., Noh, H.Y. (2024). Structure-Agnostic Gait Cycle Segmentation for In-Home Gait Health Monitoring Through Footstep-Induced Structural Vibrations. In: Noh, H.Y., Whelan, M., Harvey, P.S. (eds) Dynamics of Civil Structures, Volume 2. SEM 2023. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-031-36663-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36663-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36662-8

  • Online ISBN: 978-3-031-36663-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics