Skip to main content

Experimental Vibration Analysis on the Rykkjem Ferry Dock During Ferry Berthing

  • Conference paper
  • First Online:
Dynamics of Civil Structures, Volume 2 (SEM 2023)

Abstract

This chapter presents results from measurements on the Rykkjem ferry dock in Møre and Romsdal county in Norway. The study was conducted as a part of a bigger project that aims to examine the resilience of critical coastal infrastructure when exposed to extreme events. The work presented herein includes a qualitative assessment of recorded time series and describes results from the modal analysis. It is further discussed how long-term monitoring of the existing ferry docks can improve understanding of underlying dynamics, ferry-induced loads and ongoing deterioration processes for ferry dock bridges and as a result of that, improve design safety and the economic aspects when it comes to maintaining this critical part of infrastructure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dunham, K.K.: Coastal highway route E39 – extreme crossings. Transp. Res. Procedia. 14(2352), 494–498 (2016)

    Article  Google Scholar 

  2. Xu, Y., Øiseth, O., Moan, T., Naess, A.: Prediction of long-term extreme load effects due to wave and wind actions for cable-supported bridges with floating pylons. Eng. Struct. 172, 321–333 (2018)

    Article  Google Scholar 

  3. Minoretti, A., Xiang, X., Eidem, M., Wang, J., Dunham, K.: Design analysis and validation of the submerged floating tube bridge over the Bjørnefjord BT. In: Proceedings of the 14th International Conference on Vibration Problems, pp. 757–770 (2021)

    Google Scholar 

  4. Andersen, M.S., Johansson, J., Brandt, A., Hansen, S.O.: Aerodynamic stability of long span suspension bridges with low torsional natural frequencies. Eng. Struct. 120, 82–91 (2016)

    Article  Google Scholar 

  5. Vegvesen, S.: Hånbok V620 – Ferjestatistikk 2016, 2018. [Online]. Available: http://www.vegvesen.no/Fag/Trafikk/Trafikkdata/Ferjestatistikk

  6. Høyem, H., Odeck, J.: Assessing the socially optimal capacity at a selection of Norwegian car ferry crossings. Case Stud. Transp. Policy. 10(1), 41–56 (2022)

    Article  Google Scholar 

  7. Nørstebø, V.S., Johansen, U.: Optimal transportation of logs and location of quay facilities in coastal regions of Norway. For. Policy Econ. 26, 71–81 (2013)

    Article  Google Scholar 

  8. Andersen, S.N., Tørset, T.: Waiting time for ferry services: Empirical evidence from Norway. Case Stud. Transp. Policy. 7(3), 667–676 (2019)

    Article  Google Scholar 

  9. Sæther, S.R., Moe, E.: A green maritime shift: Lessons from the electrification of ferries in Norway. Energy Res. Soc. Sci. 81(August), 102282 (2021)

    Article  Google Scholar 

  10. Veitch, E., et al.: From captain to button-presser: operators’ perspectives on navigating highly automated ferries. J. Phys. Conf. Ser. 2311(1), 012028 (2022)

    Article  Google Scholar 

  11. Thyri, E.H., Breivik, M., Lekkas, A.M.: A path-velocity decomposition approach to collision avoidance for autonomous passenger ferries in confined waters. IFAC-PapersOnLine. 53(2), 14628–14635 (2020)

    Article  Google Scholar 

  12. Aurlien, A., Breivik, M., Eriksen, B.O.H.: Multivariate modeling and adaptive control of autonomous ferries. IFAC-PapersOnLine. 54(16), 395–401 (2021)

    Article  Google Scholar 

  13. Najdorf, E.: Tilstandsovervåkning av ferjekaier, bachelor thesis. Norwegian University of Technology (2022)

    Google Scholar 

  14. Vegvesen, S.: Brutus – management system for bridges, ferry quays and other load-bearing structures in Norway. https://brutus.atlas.vegvesen.no/

  15. Vegvesen, S.: Håndbok N400 Bruprosjektering. Vegdirektoratet, Oslo (2015)

    Google Scholar 

  16. Parker Hannifin MicroStrain Sensing, MicroStrain Sensing Product Datasheet, 3DM-CV5-IMU, (2020). [Online]. Available: https://www.microstrain.com/sites/default/files/g-link-200_datasheet_8400-0102_rev_h.pdf

  17. Lourens, E., Reynders, E., De Roeck, G., Degrande, G., Lombaert, G.: An augmented Kalman filter for force identification in structural dynamics. Mech. Syst. Signal Process. 27(1), 446–460 (2012)

    Article  Google Scholar 

  18. Nord, T.S., Oiseth, O., Lourens, E.M.: Ice force identification on the Nordströmsgrund lighthouse. Comput. Struct. 169, 24–39 (2016)

    Article  Google Scholar 

  19. Petersen, W., Øiseth, O., Lourens, E.: Wind load estimation and virtual sensing in long-span suspension bridges using physics-informed Gaussian process latent force models. Mech. Syst. Signal Process. 170(October 2021), 108742 (2022)

    Article  Google Scholar 

  20. Fallais, D.J.M., Voormeeren, S., Lourens, E.: Vibration-based identification of hydrodynamic loads and system parameters for offshore wind turbine support structures. Energy Procedia. 94(September), 191–198 (2016)

    Article  Google Scholar 

  21. Cantero, D.: Moving point load approximation from bridge response signals and its application to bridge Weigh-in-Motion. Eng. Struct. 233, 111931 (2021)

    Article  Google Scholar 

  22. Zhu, J., Wang, W., Huang, S., Ding, W.: An improved calibration technique for mems accelerometer-based inclinometers. Sensors (Switzerland). 20(2) (2020)

    Google Scholar 

  23. Fisher, C.: Using an accelerometer for inclination sensing, AN-1057, Appl. note, Analog Devices, pp. 1–8, 2010, [Online]. Available: http://healthcare.analog.com/static/imported-files/application_notes/AN-1057.pdf

  24. Döhler, M., Mevel, L.: Efficient multi-order uncertainty computation for stochastic subspace identification. Mech. Syst. Signal Process. 38(2), 346–366 (2013)

    Article  MATH  Google Scholar 

  25. Reynders, E., Pintelon, R., De Roeck, G.: Uncertainty bounds on modal parameters obtained from stochastic subspace identification. Mech. Syst. Signal Process. 22(4), 948–969 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The study was conducted with support from the Research Council of Norway through the Norwegian Regional Research fund in Møre og Romsdal county (SHMBru project 331578). This research was conducted with financial support from the Møre og Romsdal fylke. The authors gratefully acknowledge this support the support from Møre og Romsdal County during planning and execution of instrumentation and measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartosz Siedziako .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Siedziako, B., Fenerci, A., Nord, T.S. (2024). Experimental Vibration Analysis on the Rykkjem Ferry Dock During Ferry Berthing. In: Noh, H.Y., Whelan, M., Harvey, P.S. (eds) Dynamics of Civil Structures, Volume 2. SEM 2023. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-031-36663-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36663-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36662-8

  • Online ISBN: 978-3-031-36663-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics