Skip to main content

Pathophysiology of NPH

  • Chapter
  • First Online:
Normal Pressure Hydrocephalus

Abstract

Over the past decades, there have been various hypotheses and theories discussing the aetiology of Normal Pressure Hydrocephalus (NPH). This reversible form of dementia, as an entity characterised by the famous clinical triad of symptoms: gait impairment, urinary incontinence, and cognitive deficit, represents a complex vicious cycle of pathophysiological mechanisms simultaneously involving each other, rather than being a consequence of one well-defined cause. Despite a lot of effort to fully understand the pathogenesis of the disease, a clear cause and exact pathophysiological pathways remain unclear. Pathophysiological factors including the impairment of glymphatic system, reduced arterial pulsatility, associated metabolic and osmotic disbalances, astrogliosis, or neuroinflammation are known to contribute to the disease’s pathogenesis, and lead to NPH manifestation. In this chapter, we summarise both historical and current conceptions of NPH pathophysiology, in relation to typical clinical and radiological findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AQP:

Aquaporin

BBB:

Blood-brain barrier

CFAP:

Cilia- and flagella-associated protein

CI:

Confidence interval

CiNPHT:

Comprehensive idiopathic normal-pressure hydrocephalus theory

CNS:

Central nervous system

CSAS:

Cortical subarachnoid spaces

CSF:

Cerebrospinal fluid

DTI-ALPS:

Diffusion tensor image analysis along the perivascular space

ICP:

Intracranial pressure

iNPH:

Idiopathic normal pressure hydrocephalus

LIAS:

Late-onset idiopathic aqueductal stenosis

MRI:

Magnetic resonance imaging

NPH:

Normal pressure hydrocephalus

OR:

Odds ratio

OSA:

Obstructive sleep apnoea

PCD:

Primary cilia dyskinesia

sNPH:

Secondary normal pressure hydrocephalus

References

  1. Filis AK, Aghayev K, Vrionis FD. Cerebrospinal fluid and hydrocephalus: physiology, diagnosis, and treatment. Cancer Control. 2017;24:6–8. https://doi.org/10.1177/107327481702400102.

    Article  PubMed  Google Scholar 

  2. Gavrilov GV, Gaydar BV, Svistov DV, Korovin AE, Samarcev IN, Churilov LP, Tovpeko DV. Idiopathic normal pressure hydrocephalus (Hakim-Adams syndrome): clinical symptoms, diagnosis and treatment. Psychiatr Danub. 2019;31:737–44.

    PubMed  Google Scholar 

  3. Martín-Láez R, Caballero-Arzapalo H, López-Menéndez L, Arango-Lasprilla JC, Vázquez-Barquero A. Epidemiology of idiopathic normal pressure hydrocephalus: a systematic review of the literature. World Neurosurg. 2015;84:2002–9. https://doi.org/10.1016/j.wneu.2015.07.005.

    Article  PubMed  Google Scholar 

  4. Nakajima M, Yamada S, Miyajima M, Ishii K, Kuriyama N, Kazui H, Kanemoto H, Suehiro T, Yoshiyama K, Kameda M, et al. Guidelines for management of idiopathic normal pressure hydrocephalus (third edition): endorsed by the Japanese society of normal pressure hydrocephalus. Neurol Med Chir (Tokyo). 2021;61:63–97. https://doi.org/10.2176/nmc.st.2020-0292.

    Article  PubMed  Google Scholar 

  5. Jeppsson A, Zetterberg H, Blennow K, Wikkelsø C. Idiopathic normal-pressure hydrocephalus: pathophysiology and diagnosis by CSF biomarkers. Neurology. 2013;80:1385–92. https://doi.org/10.1212/WNL.0b013e31828c2fda.

    Article  CAS  PubMed  Google Scholar 

  6. Daou B, Klinge P, Tjoumakaris S, Rosenwasser RH, Jabbour P. Revisiting secondary normal pressure hydrocephalus: does it exist? A review. Neurosurg Focus. 2016;41:E6. https://doi.org/10.3171/2016.6.focus16189.

    Article  PubMed  Google Scholar 

  7. Wang C, Du HG, Yin LC, He M, Zhang GJ, Tian Y, Hao BL. Analysis of related factors affecting prognosis of shunt surgery in patients with secondary normal pressure hydrocephalus. Chin J Traumatol. 2013;16:221–4.

    PubMed  Google Scholar 

  8. Brean A, Fredø HL, Sollid S, Müller T, Sundstrøm T, Eide PK. Five-year incidence of surgery for idiopathic normal pressure hydrocephalus in Norway. Acta Neurol Scand. 2009;120:314–6. https://doi.org/10.1111/j.1600-0404.2009.01250.x.

    Article  CAS  PubMed  Google Scholar 

  9. Brean A, Eide PK. Prevalence of probable idiopathic normal pressure hydrocephalus in a Norwegian population. Acta Neurol Scand. 2008;118:48–53. https://doi.org/10.1111/j.1600-0404.2007.00982.x.

    Article  CAS  PubMed  Google Scholar 

  10. Jaraj D, Rabiei K, Marlow T, Jensen C, Skoog I, Wikkelso C. Prevalence of idiopathic normal-pressure hydrocephalus. Neurology. 2014;82:1449–54. https://doi.org/10.1212/wnl.0000000000000342.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hakim S, Adams RD. The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. J Neurol Sci. 1965;2:307–27. https://doi.org/10.1016/0022-510x(65)90016-x.

  12. Reiber H. Flow rate of cerebrospinal fluid (CSF)—a concept common to normal blood-CSF barrier function and to dysfunction in neurological diseases. J Neurol Sci. 1994;122:189–203. https://doi.org/10.1016/0022-510X(94)90298-4.

    Article  CAS  PubMed  Google Scholar 

  13. Wang Z, Zhang Y, Hu F, Ding J, Wang X. Pathogenesis and pathophysiology of idiopathic normal pressure hydrocephalus. CNS Neurosci Ther. 2020;26:1230–40. https://doi.org/10.1111/cns.13526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Preuss M, Hoffmann KT, Reiss-Zimmermann M, Hirsch W, Merkenschlager A, Meixensberger J, Dengl M. Updated physiology and pathophysiology of CSF circulation–the pulsatile vector theory. Childs Nerv Syst. 2013;29:1811–25. https://doi.org/10.1007/s00381-013-2219-0.

    Article  CAS  PubMed  Google Scholar 

  15. Benveniste H, Liu X, Koundal S, Sanggaard S, Lee H, Wardlaw J. The glymphatic system and waste clearance with brain aging: a review. Gerontology. 2019;65:106–19. https://doi.org/10.1159/000490349.

    Article  PubMed  Google Scholar 

  16. Reeves BC, Karimy JK, Kundishora AJ, Mestre H, Cerci HM, Matouk C, Alper SL, Lundgaard I, Nedergaard M, Kahle KT. Glymphatic system impairment in Alzheimer’s disease and idiopathic normal pressure hydrocephalus. Trends Mol Med. 2020;26:285–95. https://doi.org/10.1016/j.molmed.2019.11.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Plog BA, Nedergaard M. The glymphatic system in central nervous system health and disease: past, present, and future. Annu Rev Pathol. 2018;13:379–94. https://doi.org/10.1146/annurev-pathol-051217-111018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Korhonen VE, Helisalmi S, Jokinen A, Jokinen I, Lehtola J-M, Oinas M, Lönnrot K, Avellan C, Kotkansalo A, Frantzen J, et al. Copy number loss in SFMBT1 is common among Finnish and Norwegian patients with iNPH. Neurology Genet. 2018;4: e291. https://doi.org/10.1212/nxg.0000000000000291.

    Article  CAS  Google Scholar 

  19. Greitz D. Cerebrospinal fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography. Acta Radiol Suppl. 1993;386:1–23.

    Google Scholar 

  20. Floyd Domer R. Basic physiology of cerebrospinal fluid outflow. Exp Eye Res. 1977;25:323–32. https://doi.org/10.1016/S0014-4835(77)80029-8.

  21. Rekate HL, Nadkarni TD, Wallace D. The importance of the cortical subarachnoid space in understanding hydrocephalus. J Neurosurg: Pediatr PED. 2008;2:1–11. https://doi.org/10.3171/PED/2008/2/7/001.

    Article  Google Scholar 

  22. Krishnamurthy S, Li J. New concepts in the pathogenesis of hydrocephalus. Transl Pediatr. 2014;3:185–94. https://doi.org/10.3978/j.issn.2224-4336.2014.07.02.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hoff J, Barber R. Transcerebral mantle pressure in normal pressure hydrocephalus. Arch Neurol. 1974;31:101–5. https://doi.org/10.1001/archneur.1974.00490380049005.

    Article  CAS  PubMed  Google Scholar 

  24. Raimondi AJ. A unifying theory for the definition and classification of hydrocephalus. Childs Nerv Syst. 1994;10:2–12. https://doi.org/10.1007/bf00313578.

    Article  CAS  PubMed  Google Scholar 

  25. Bateman GA. Idiopathic intracranial hypertension: priapism of the brain? Med Hypotheses. 2004;63:549–52. https://doi.org/10.1016/j.mehy.2004.03.014.

    Article  PubMed  Google Scholar 

  26. Oi S, Di Rocco C. Proposal of “evolution theory in cerebrospinal fluid dynamics” and minor pathway hydrocephalus in developing immature brain. Childs Nerv Syst. 2006;22:662–9. https://doi.org/10.1007/s00381-005-0020-4.

    Article  PubMed  Google Scholar 

  27. Matsumae M, Sato O, Hirayama A, Hayashi N, Takizawa K, Atsumi H, Sorimachi T. Research into the physiology of cerebrospinal fluid reaches a new horizon: intimate exchange between cerebrospinal fluid and interstitial fluid may contribute to maintenance of homeostasis in the central nervous system. Neurol Med Chir. 2016;56:416–41. https://doi.org/10.2176/nmc.ra.2016-0020.

    Article  Google Scholar 

  28. Ammar A, Abbas F, Issawi W, Fakhro F, Batarfi L, Hendam A, Hasen M, Shawarby M, Al-Jehani H. Idiopathic normal-pressure hydrocephalus syndrome: Is it understood? The comprehensive idiopathic normal-pressure hydrocephalus theory (CiNPHT). In; 2017. p. 67–82. https://doi.org/10.1007/978-3-319-61304-8_5.

  29. Iliff JJ, Wang M, Liao Y, Plogg Benjamin A, Peng W, Gundersen Georg A, Benveniste H, Vates GE, Deane R, Goldman Steven A, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4:147ra111–147ra111. https://doi.org/10.1126/scitranslmed.3003748.

  30. Chikly B, Quaghebeur J. Reassessing cerebrospinal fluid (CSF) hydrodynamics: a literature review presenting a novel hypothesis for CSF physiology. J Bodyw Mov Ther. 2013;17:344–54. https://doi.org/10.1016/j.jbmt.2013.02.002.

    Article  PubMed  Google Scholar 

  31. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342:373–7. https://doi.org/10.1126/science.1241224.

    Article  CAS  PubMed  Google Scholar 

  32. Eide PK, Hansson HA. Astrogliosis and impaired aquaporin-4 and dystrophin systems in idiopathic normal pressure hydrocephalus. Neuropathol Appl Neurobiol. 2018;44:474–90. https://doi.org/10.1111/nan.12420.

    Article  CAS  PubMed  Google Scholar 

  33. Ringstad G, Valnes LM, Dale AM, Pripp AH, Vatnehol S-AS, Emblem KE, Mardal K-A, Eide PK. Brain-wide glymphatic enhancement and clearance in humans assessed with MRI. JCI Insight. 2018;3. https://doi.org/10.1172/jci.insight.121537.

  34. Román GC, Jackson RE, Fung SH, Zhang YJ, Verma AK. Sleep-disordered breathing and idiopathic normal-pressure hydrocephalus: recent pathophysiological advances. Curr Neurol Neurosci Rep. 2019;19. https://doi.org/10.1007/s11910-019-0952-9.

  35. Eide PK, Ringstad G. Delayed clearance of cerebrospinal fluid tracer from entorhinal cortex in idiopathic normal pressure hydrocephalus: a glymphatic magnetic resonance imaging study. J Cereb Blood Flow Metab. 2019;39:1355–68. https://doi.org/10.1177/0271678x18760974.

    Article  PubMed  Google Scholar 

  36. Eide PK, Hansson HA. Blood-brain barrier leakage of blood proteins in idiopathic normal pressure hydrocephalus. Brain Res. 2020;1727: 146547. https://doi.org/10.1016/j.brainres.2019.146547.

    Article  CAS  PubMed  Google Scholar 

  37. Keong NCH, Pena A, Price SJ, Czosnyka M, Czosnyka Z, Pickard JD. Imaging normal pressure hydrocephalus: theories, techniques, and challenges. Neurosurg Focus. 2016;41:E11. https://doi.org/10.3171/2016.7.focus16194.

    Article  PubMed  Google Scholar 

  38. Bering EA Jr, Sato O. Hydrocephalus: changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles. J Neurosurg. 1963;20:1050–63. https://doi.org/10.3171/jns.1963.20.12.1050.

    Article  PubMed  Google Scholar 

  39. Pappenheimer JR, Heisey SR, Jordan EF, Downer Jd. Perfusion of the cerebral ventricular system in unanesthetized goats. Am J Physiol-Legacy Content. 1962;203:763–74. https://doi.org/10.1152/ajplegacy.1962.203.5.763.

  40. Pappenheimer JR, Miller TB, Goodrich CA. Sleep-promoting effects of cerebrospinal fluid from sleep-deprived goats. Proc Natl Acad Sci. 1967;58:513–7. https://doi.org/10.1073/pnas.58.2.513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brinker T, Stopa E, Morrison J, Klinge P. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS. 2014;11:10. https://doi.org/10.1186/2045-8118-11-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pirouzmand F, Tator CH, Rutka J. Management of hydrocephalus associated with vestibular schwannoma and other cerebellopontine angle tumors. Neurosurgery. 2001;48:1246–53; discussion 1253–1244. https://doi.org/10.1097/00006123-200106000-00010.

  43. Xiao F, Lv S, Zong Z, Wu L, Tang X, Kuang W, Zhang P, Li X, Fu J, Xiao M, et al. Cerebrospinal fluid biomarkers for brain tumor detection: clinical roles and current progress. Am J Transl Res. 2020;12:1379–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Marmarou A, Foda MA, Bandoh K, Yoshihara M, Yamamoto T, Tsuji O, Zasler N, Ward JD, Young HF. Posttraumatic ventriculomegaly: hydrocephalus or atrophy? A new approach for diagnosis using CSF dynamics. J Neurosurg. 1996;85:1026–35. https://doi.org/10.3171/jns.1996.85.6.1026.

    Article  CAS  PubMed  Google Scholar 

  45. Miyati T, Mase M, Kasai H, Hara M, Yamada K, Shibamoto Y, Soellinger M, Baltes C, Luechinger R. Noninvasive MRI assessment of intracranial compliance in idiopathic normal pressure hydrocephalus. J Magn Reson Imaging. 2007;26:274–8. https://doi.org/10.1002/jmri.20999.

    Article  PubMed  Google Scholar 

  46. Tisell M, Tullberg M, Månsson JE, Fredman P, Blennow K, Wikkelsø C. Differences in cerebrospinal fluid dynamics do not affect the levels of biochemical markers in ventricular CSF from patients with aqueductal stenosis and idiopathic normal pressure hydrocephalus. Eur J Neurol. 2004;11:17–23. https://doi.org/10.1046/j.1351-5101.2003.00698.x.

    Article  CAS  PubMed  Google Scholar 

  47. Chrysikopoulos H. Idiopathic normal pressure hydrocephalus: thoughts on etiology and pathophysiology. Med Hypotheses. 2009;73:718–24. https://doi.org/10.1016/j.mehy.2009.04.044.

    Article  PubMed  Google Scholar 

  48. Kim DJ, Kim H, Kim YT, Yoon BC, Czosnyka Z, Park KW, Czosnyka M. Thresholds of resistance to CSF outflow in predicting shunt responsiveness. Neurol Res. 2015;37:332–40. https://doi.org/10.1179/1743132814y.0000000454.

    Article  PubMed  Google Scholar 

  49. Boon AJ, Tans JT, Delwel EJ, Egeler-Peerdeman SM, Hanlo PW, Wurzer HA, Avezaat CJ, de Jong DA, Gooskens RH, Hermans J. Dutch normal-pressure hydrocephalus study: randomized comparison of low- and medium-pressure shunts. J Neurosurg. 1998;88:490–5. https://doi.org/10.3171/jns.1998.88.3.0490.

    Article  CAS  PubMed  Google Scholar 

  50. Bateman GA. The pathophysiology of idiopathic normal pressure hydrocephalus: cerebral ischemia or altered venous hemodynamics? Am J Neuroradiol. 2008;29:198–203. https://doi.org/10.3174/ajnr.a0739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kuriyama N, Tokuda T, Yamada K, Akazawa K, Hosoda M, Sakai K, Watanabe Y, Nakagawa M. Flow velocity of the superior sagittal sinus is reduced in patients with idiopathic normal pressure hydrocephalus. J Neuroimaging. 2011;21:365–9. https://doi.org/10.1111/j.1552-6569.2011.00592.x.

    Article  PubMed  Google Scholar 

  52. Benabid AL, De Rougemont J, Barge M. Cerebral venous pressure, sinus pressure and intracranial pressure. Neurochirurgie. 1974;20:623–32.

    CAS  PubMed  Google Scholar 

  53. Wilson MH. Monro-Kellie 2.0: the dynamic vascular and venous pathophysiological components of intracranial pressure. J Cereb Blood Flow Metab. 2016;36:1338–50. https://doi.org/10.1177/0271678x16648711.

  54. Kayis C, Aygok GA. Cerebrospinal fluid dynamics and infusion techniques. In: Rigamonti D, editors. Adult hydrocephalus. Cambridge: Cambridge University Press; 2014. p. 139–49. https://doi.org/10.1017/CBO9781139382816.014.

  55. Marmarou A, Shulman K, Rosende RM. A nonlinear analysis of the cerebrospinal fluid system and intracranial pressure dynamics. J Neurosurg. 1978;48:332–44. https://doi.org/10.3171/jns.1978.48.3.0332.

    Article  CAS  PubMed  Google Scholar 

  56. Kim H, Jeong E-J, Park D-H, Czosnyka Z, Yoon BC, Kim K, Czosnyka M, Kim D-J. Finite element analysis of periventricular lucency in hydrocephalus: extravasation or transependymal CSF absorption? J Neurosurg. 2016;124:334–41. https://doi.org/10.3171/2014.11.jns141382.

    Article  PubMed  Google Scholar 

  57. Bulat M, Klarica M. Recent insights into a new hydrodynamics of the cerebrospinal fluid. Brain Res Rev. 2011;65:99–112. https://doi.org/10.1016/j.brainresrev.2010.08.002.

    Article  PubMed  Google Scholar 

  58. Mascalchi M, Arnetoli G, Inzitari D, Dal Pozzo G, Lolli F, Caramella D, Bartolozzi C. Cine-MR imaging of aqueductal CSF flow in normal pressure hydrocephalus syndrome before and after CSF shunt. Acta Radiol. 1993;34:586–92.

    Article  CAS  PubMed  Google Scholar 

  59. Czosnyka M, Czosnyka Z, Momjian S, Pickard JD. Cerebrospinal fluid dynamics. Physiol Meas. 2004;25:R51-76. https://doi.org/10.1088/0967-3334/25/5/r01.

    Article  PubMed  Google Scholar 

  60. Egnor M, Wagshul M, Madsen J, Zou R, McCormack E, Hazel R, McAllister P. The cerebral Windkessel and its relevance to hydrocephalus: the notch filter model of cerebral blood flow. Cerebrospinal Fluid Res. 2006;3. https://doi.org/10.1186/1743-8454-3-s1-s48.

  61. Israelsson H, Carlberg B, Wikkelsö C, Laurell K, Kahlon B, Leijon G, Eklund A, Malm J. Vascular risk factors in INPH. Neurology. 2017;88:577–85. https://doi.org/10.1212/wnl.0000000000003583.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hamilton RB, Scalzo F, Baldwin K, Dorn A, Vespa P, Hu X, Bergsneider M. Opposing CSF hydrodynamic trends found in the cerebral aqueduct and prepontine cistern following shunt treatment in patients with normal pressure hydrocephalus. Fluids Barriers CNS. 2019;16. https://doi.org/10.1186/s12987-019-0122-0.

  63. Yatsushiro S, Sunohara S, Hayashi N, Hirayama A, Matsumae M, Atsumi H, Kuroda K. Cardiac-driven pulsatile motion of intracranial cerebrospinal fluid visualized based on a correlation mapping technique. Magn Reson Med Sci. 2018;17:151–60. https://doi.org/10.2463/mrms.mp.2017-0014.

    Article  CAS  PubMed  Google Scholar 

  64. Hentschel S, Mardal KA, Løvgren AE, Linge S, Haughton V. Characterization of cyclic CSF flow in the foramen magnum and upper cervical spinal canal with MR flow imaging and computational fluid dynamics. Am J Neuroradiol. 2010;31:997–1002. https://doi.org/10.3174/ajnr.a1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sass LR, Khani M, Natividad GC, Tubbs RS, Baledent O, Martin BA. A 3D subject-specific model of the spinal subarachnoid space with anatomically realistic ventral and dorsal spinal cord nerve rootlets. Fluids Barriers CNS. 2017;14. https://doi.org/10.1186/s12987-017-0085-y.

  66. Eide PK, Stanisic M. Cerebral microdialysis and intracranial pressure monitoring in patients with idiopathic normal-pressure hydrocephalus: association with clinical response to extended lumbar drainage and shunt surgery. J Neurosurg. 2010;112:414–24. https://doi.org/10.3171/2009.5.Jns09122.

    Article  CAS  PubMed  Google Scholar 

  67. Green LM, Wallis T, Schuhmann MU, Jaeger M. Intracranial pressure waveform characteristics in idiopathic normal pressure hydrocephalus and late-onset idiopathic aqueductal stenosis. Fluids Barriers CNS. 2021;18. https://doi.org/10.1186/s12987-021-00259-y.

  68. Jessen NA, Munk ASF, Lundgaard I, Nedergaard M. The glymphatic system: a beginner’s guide. Neurochem Res. 2015;40:2583–99. https://doi.org/10.1007/s11064-015-1581-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nakada T. Virchow-Robin space and aquaporin-4: new insights on an old friend. Croat Med J. 2014;55:328–36. https://doi.org/10.3325/cmj.2014.55.328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. The Lancet Neurology. 2018;17:1016–24. https://doi.org/10.1016/s1474-4422(18)30318-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Desai B, Hsu Y, Schneller B, Hobbs JG, Mehta AI, Linninger A. Hydrocephalus: the role of cerebral aquaporin-4 channels and computational modeling considerations of cerebrospinal fluid. Neurosurg Focus. 2016;41:E8. https://doi.org/10.3171/2016.7.focus16191.

    Article  PubMed  Google Scholar 

  72. Badaut J, Lasbennes F, Magistretti PJ, Regli L. Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab. 2002;22:367–78. https://doi.org/10.1097/00004647-200204000-00001.

    Article  CAS  PubMed  Google Scholar 

  73. Nagelhus EA, Ottersen OP. Physiological roles of aquaporin-4 in brain. Physiol Rev. 2013;93:1543–62. https://doi.org/10.1152/physrev.00011.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Verkman AS, Smith AJ, Phuan P-W, Tradtrantip L, Anderson MO. The aquaporin-4 water channel as a potential drug target in neurological disorders. Expert Opin Ther Targets. 2017;21:1161–70. https://doi.org/10.1080/14728222.2017.1398236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ke C, Poon WS, Ng HK, Pang JC, Chan Y. Heterogeneous responses of aquaporin-4 in oedema formation in a replicated severe traumatic brain injury model in rats. Neurosci Lett. 2001;301:21–4. https://doi.org/10.1016/s0304-3940(01)01589-0.

    Article  CAS  PubMed  Google Scholar 

  76. Qi LL, Fang SH, Shi WZ, Huang XQ, Zhang XY, Lu YB, Zhang WP, Wei EQ. CysLT2 receptor-mediated AQP4 up-regulation is involved in ischemic-like injury through activation of ERK and p38 MAPK in rat astrocytes. Life Sci. 2011;88:50–6. https://doi.org/10.1016/j.lfs.2010.10.025.

    Article  CAS  PubMed  Google Scholar 

  77. Ribeiro Mde C, Hirt L, Bogousslavsky J, Regli L, Badaut J. Time course of aquaporin expression after transient focal cerebral ischemia in mice. J Neurosci Res. 2006;83:1231–40. https://doi.org/10.1002/jnr.20819.

    Article  CAS  PubMed  Google Scholar 

  78. Misu T, Fujihara K, Kakita A, Konno H, Nakamura M, Watanabe S, Takahashi T, Nakashima I, Takahashi H, Itoyama Y. Loss of aquaporin 4 in lesions of neuromyelitis optica: distinction from multiple sclerosis. Brain. 2007;130:1224–34. https://doi.org/10.1093/brain/awm047.

    Article  CAS  PubMed  Google Scholar 

  79. Eid T, Lee TSW, Thomas MJ, Amiry-Moghaddam M, Bjornsen LP, Spencer DD, Agre P, Ottersen OP, De Lanerolle NC. Loss of perivascular aquaporin 4 may underlie deficient water and K+ homeostasis in the human epileptogenic hippocampus. Proc Natl Acad Sci. 2005;102:1193–8. https://doi.org/10.1073/pnas.0409308102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hasan-Olive MM, Enger R, Hansson HA, Nagelhus EA, Eide PK. Loss of perivascular aquaporin-4 in idiopathic normal pressure hydrocephalus. Glia. 2019;67:91–100. https://doi.org/10.1002/glia.23528.

    Article  PubMed  Google Scholar 

  81. Haj-Yasein NN, Vindedal GF, Eilert-Olsen M, Gundersen GA, Skare O, Laake P, Klungland A, Thoren AE, Burkhardt JM, Ottersen OP, et al. Glial-conditional deletion of aquaporin-4 (Aqp4) reduces blood-brain water uptake and confers barrier function on perivascular astrocyte endfeet. Proc Natl Acad Sci. 2011;108:17815–20. https://doi.org/10.1073/pnas.1110655108.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Vindedal GF, Thoren AE, Jensen V, Klungland A, Zhang Y, Holtzman MJ, Ottersen OP, Nagelhus EA. Removal of aquaporin-4 from glial and ependymal membranes causes brain water accumulation. Mol Cell Neurosci. 2016;77:47–52. https://doi.org/10.1016/j.mcn.2016.10.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ringstad G, Vatnehol SAS, Eide PK. Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain. 2017;140:2691–705. https://doi.org/10.1093/brain/awx191.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kass DA, Shapiro EP, Kawaguchi M, Capriotti AR, Scuteri A, Degroof RC, Lakatta EG. Improved arterial compliance by a novel advanced glycation end-product crosslink breaker. Circulation. 2001;104:1464–70. https://doi.org/10.1161/hc3801.097806.

    Article  CAS  PubMed  Google Scholar 

  85. Semba RD, Nicklett EJ, Ferrucci L. Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol A Biol Sci Med Sci. 2010;65A:963–75. https://doi.org/10.1093/gerona/glq074.

    Article  CAS  PubMed Central  Google Scholar 

  86. Tan C, Wang X, Wang Y, Wang C, Tang Z, Zhang Z, Liu J, Xiao G. The pathogenesis based on the glymphatic system, diagnosis, and treatment of idiopathic normal pressure hydrocephalus. Clin Interv Aging. 2021;16:139–53. https://doi.org/10.2147/cia.s290709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yamada S, Ishikawa M, Nozaki K. Exploring mechanisms of ventricular enlargement in idiopathic normal pressure hydrocephalus: a role of cerebrospinal fluid dynamics and motile cilia. Fluids Barriers CNS. 2021;18. https://doi.org/10.1186/s12987-021-00243-6.

  88. Taoka T, Masutani Y, Kawai H, Nakane T, Matsuoka K, Yasuno F, Kishimoto T, Naganawa S. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer’s disease cases. Jpn J Radiol. 2017;35:172–8. https://doi.org/10.1007/s11604-017-0617-z.

    Article  PubMed  Google Scholar 

  89. Taoka T, Naganawa S. Neurofluid dynamics and the glymphatic system: a neuroimaging perspective. Korean J Radiol. 2020;21:1199. https://doi.org/10.3348/kjr.2020.0042.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Rammo R, Nagel S. The importance of non-invasive imaging in understanding the glymphatic system in normal pressure hydrocephalus. Parkinsonism Relat Disord. 2021;82:158. https://doi.org/10.1016/j.parkreldis.2021.01.007.

    Article  CAS  PubMed  Google Scholar 

  91. Bae YJ, Choi BS, Kim J-M, Choi J-H, Cho SJ, Kim JH. Altered glymphatic system in idiopathic normal pressure hydrocephalus. Parkinsonism Relat Disord. 2021;82:56–60. https://doi.org/10.1016/j.parkreldis.2020.11.009.

    Article  CAS  PubMed  Google Scholar 

  92. Chen Z, Liu C, Zhang J, Relkin N, Xing Y, Li Y. Cerebrospinal fluid Aβ42, t-tau, and p-tau levels in the differential diagnosis of idiopathic normal-pressure hydrocephalus: a systematic review and meta-analysis. Fluids Barriers CNS. 2017;14. https://doi.org/10.1186/s12987-017-0062-5.

  93. Bech-Azeddine R, Hogh P, Juhler M, Gjerris F, Waldemar G. Idiopathic normal-pressure hydrocephalus: clinical comorbidity correlated with cerebral biopsy findings and outcome of cerebrospinal fluid shunting. J Neurol Neurosurg Psychiatry. 2007;78:157–61. https://doi.org/10.1136/jnnp.2006.095117.

    Article  CAS  PubMed  Google Scholar 

  94. Benveniste H, Heerdt PM, Fontes M, Rothman DL, Volkow ND. Glymphatic system function in relation to anesthesia and sleep states. Anesth Analg. 2019;128:747–58. https://doi.org/10.1213/ane.0000000000004069.

    Article  PubMed  Google Scholar 

  95. Gordleeva S, Kanakov O, Ivanchenko M, Zaikin A, Franceschi C. Brain aging and garbage cleaning. Semin Immunopathol. 2020;42:647–65. https://doi.org/10.1007/s00281-020-00816-x.

    Article  PubMed  Google Scholar 

  96. Kang J-E, Lim Miranda M, Bateman Randall J, Lee James J, Smyth Liam P, Cirrito John R, Fujiki N, Nishino S, Holtzman DM. Amyloid-β dynamics are regulated by orexin and the sleep-wake cycle. Science. 2009;326:1005–7. https://doi.org/10.1126/science.1180962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ohayon MM, Carskadon MA, Guilleminault C, Vitiello MV. Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan. Sleep. 2004;27:1255–73. https://doi.org/10.1093/sleep/27.7.1255.

    Article  PubMed  Google Scholar 

  98. Kalani MYS, Filippidis AS, Rekate HL. Hydrocephalus and aquaporin’s: the role of aquaporin-1. In: Springer Vienna; 2012. p. 51–54. https://doi.org/10.1007/978-3-7091-0923-6_11.

  99. Hua Y, Ying X, Qian Y, Liu H, Lan Y, Xie A, Zhu X. Physiological and pathological impact of AQP1 knockout in mice. Biosci Rep. 2019;39:BSR20182303. https://doi.org/10.1042/bsr20182303.

  100. Castañeyra-Ruiz L, González-Marrero I, Carmona-Calero EM, Abreu-Gonzalez P, Lecuona M, Brage L, Rodríguez EM, Castañeyra-Perdomo A. Cerebrospinal fluid levels of tumor necrosis factor alpha and aquaporin 1 in patients with mild cognitive impairment and idiopathic normal pressure hydrocephalus. Clin Neurol Neurosurg. 2016;146:76–81. https://doi.org/10.1016/j.clineuro.2016.04.025.

    Article  PubMed  Google Scholar 

  101. Gleason PL, Black PM, Matsumae M. The neurobiology of normal pressure hydrocephalus. Neurosurg Clin N Am. 1993;4:667–75.

    Article  CAS  PubMed  Google Scholar 

  102. Md J, Biagioni M. Normal pressure hydrocephalus. In: StatPearls. Treasure Island: StatPearls Publishing. Copyright ©; 2020.

    Google Scholar 

  103. Tang YM, Yao Y, Xu S, Li X, Hu F, Wang H, Ding J, Wang X. White matter microstructural damage associated with gait abnormalities in idiopathic normal pressure hydrocephalus. Front Aging Neurosci. 2021;13: 660621. https://doi.org/10.3389/fnagi.2021.660621.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Thompson PD. Frontal lobe ataxia. Handb Clin Neurol. 2012;103:619–22. https://doi.org/10.1016/b978-0-444-51892-7.00044-9.

    Article  PubMed  Google Scholar 

  105. Agren-Wilsson A, Lekman A, Sjöberg W, Rosengren L, Blennow K, Bergenheim AT, Malm J. CSF biomarkers in the evaluation of idiopathic normal pressure hydrocephalus. Acta Neurol Scand. 2007;116:333–9. https://doi.org/10.1111/j.1600-0404.2007.00890.x.

    Article  CAS  PubMed  Google Scholar 

  106. Lin Y-S, Lee W-J, Wang S-J, Fuh J-L. Levels of plasma neurofilament light chain and cognitive function in patients with Alzheimer or Parkinson disease. Sci. Rep. 2018;8. https://doi.org/10.1038/s41598-018-35766-w.

  107. Olsson B, Portelius E, Cullen NC, Sandelius Å, Zetterberg H, Andreasson U, Höglund K, Irwin DJ, Grossman M, Weintraub D, et al. Association of cerebrospinal fluid neurofilament light protein levels with cognition in patients with dementia, motor neuron disease, and movement disorders. JAMA Neurol. 2019;76:318. https://doi.org/10.1001/jamaneurol.2018.3746.

    Article  PubMed  Google Scholar 

  108. Mattsson N, Andreasson U, Zetterberg H, Blennow K. Association of plasma neurofilament light with neurodegeneration in patients with Alzheimer disease. JAMA Neurol. 2017;74:557. https://doi.org/10.1001/jamaneurol.2016.6117.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Tullberg M, Rosengren L, Blomsterwall E, Karlsson JE, Wikkelsö C. CSF neurofilament and glial fibrillary acidic protein in normal pressure hydrocephalus. Neurology. 1998;50:1122. https://doi.org/10.1212/WNL.50.4.1122.

    Article  CAS  PubMed  Google Scholar 

  110. Yin L-K, Zheng J-J, Tian J-Q, Hao X-Z, Li C-C, Ye J-D, Zhang Y-X, Yu H, Yang Y-M. Abnormal gray matter structural networks in idiopathic normal pressure hydrocephalus. Front Aging Neurosci. 2018;10:356–356. https://doi.org/10.3389/fnagi.2018.00356.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Khoo HM, Kishima H, Tani N, Oshino S, Maruo T, Hosomi K, Yanagisawa T, Kazui H, Watanabe Y, Shimokawa T, et al. Default mode network connectivity in patients with idiopathic normal pressure hydrocephalus. J Neurosurg. 2016;124:350–8. https://doi.org/10.3171/2015.1.jns141633.

    Article  PubMed  Google Scholar 

  112. Glenn TC, Kelly DF, Boscardin WJ, McArthur DL, Vespa P, Oertel M, Hovda DA, Bergsneider M, Hillered L, Martin NA. Energy dysfunction as a predictor of outcome after moderate or severe head injury: indices of oxygen, glucose, and lactate metabolism. J Cereb Blood Flow Metab. 2003;23:1239–50. https://doi.org/10.1097/01.wcb.0000089833.23606.7f.

    Article  CAS  PubMed  Google Scholar 

  113. Kondziella D, Sonnewald U, Tullberg M, Wikkelso C. Brain metabolism in adult chronic hydrocephalus. J Neurochem. 2008;106:1515–24. https://doi.org/10.1111/j.1471-4159.2008.05422.x.

    Article  CAS  PubMed  Google Scholar 

  114. Tarnaris A, Toma AK, Pullen E, Chapman MD, Petzold A, Cipolotti L, Kitchen ND, Keir G, Lemieux L, Watkins LD. Cognitive, biochemical, and imaging profile of patients suffering from idiopathic normal pressure hydrocephalus. Alzheimers Dement. 2011;7:501–8. https://doi.org/10.1016/j.jalz.2011.01.003.

    Article  CAS  PubMed  Google Scholar 

  115. Lundin F, Tisell A, Dahlqvist Leinhard O, Tullberg M, Wikkelso C, Lundberg P, Leijon G. Reduced thalamic N-acetylaspartate in idiopathic normal pressure hydrocephalus: a controlled 1H-magnetic resonance spectroscopy study of frontal deep white matter and the thalamus using absolute quantification. J Neurol Neurosurg Psychiatry. 2011;82:772–8. https://doi.org/10.1136/jnnp.2010.223529.

    Article  CAS  PubMed  Google Scholar 

  116. Lee C, Seo H, Yoon S-Y, Chang SH, Park S-H, Hwang J-H, Kang K, Kim C-H, Hahm MH, Park E, et al. Clinical significance of vitamin D in idiopathic normal pressure hydrocephalus. Acta Neurochir. 2021;163:1969–77. https://doi.org/10.1007/s00701-021-04849-5.

    Article  PubMed  Google Scholar 

  117. Eidsvaag VA, Hansson H-A, Heuser K, Nagelhus EA, Eide PK. Brain capillary ultrastructure in idiopathic normal pressure hydrocephalus: relationship with static and pulsatile intracranial pressure. J Neuropathol Exp Neurol. 2017;76:1034–45. https://doi.org/10.1093/jnen/nlx091.

    Article  CAS  PubMed  Google Scholar 

  118. Lee J-H, Park D-H, Back D-B, Lee J-Y, Lee C-I, Park K-J, Kang S-H, Cho T-H, Chung Y-G. Comparison of cerebrospinal fluid biomarkers between idiopathic normal pressure hydrocephalus and subarachnoid hemorrhage-induced chronic hydrocephalus: a pilot study. Med Sci Monit. 2012;18:PR19–PR25. https://doi.org/10.12659/msm.883586.

  119. Sosvorova L, Kanceva R, Vcelak J, Kancheva L, Mohapl M, Starka L, Havrdova E. The comparison of selected cerebrospinal fluid and serum cytokine levels in patients with multiple sclerosis and normal pressure hydrocephalus. Neuro Endocrinol Lett. 2015;36:564–71.

    CAS  PubMed  Google Scholar 

  120. Sosvorova L, Vcelak J, Mohapl M, Vitku J, Bicikova M, Hampl R. Selected pro- and anti-inflammatory cytokines in cerebrospinal fluid in normal pressure hydrocephalus. Neuro Endocrinol Lett. 2014;35:586–93.

    PubMed  Google Scholar 

  121. Schirinzi T, Sancesario GM, Di Lazzaro G, D’Elia A, Imbriani P, Scalise S, Pisani A. Cerebrospinal fluid biomarkers profile of idiopathic normal pressure hydrocephalus. J Neural Transm. 2018;125:673–9. https://doi.org/10.1007/s00702-018-1842-z.

    Article  CAS  PubMed  Google Scholar 

  122. Boyd FT, Cheifetz S, Andres J, Laiho M, Massagué J. Transforming growth factor-β receptors and binding proteoglycans. J Cell Sci. 1990;1990:131–8. https://doi.org/10.1242/jcs.1990.supplement_13.12.

    Article  Google Scholar 

  123. Hinck AP, Archer SJ, Qian SW, Roberts AB, Sporn MB, Weatherbee JA, Tsang MLS, Lucas R, Zhang B-L, Wenker J, et al. Transforming growth factor β1: three-dimensional structure in solution and comparison with the X-ray structure of transforming growth factor β2. Biochemistry. 1996;35:8517–34. https://doi.org/10.1021/bi9604946.

    Article  CAS  PubMed  Google Scholar 

  124. Sofroniew MV. Astrogliosis. Cold Spring Harb Perspect Biol. 2015;7: a020420. https://doi.org/10.1101/cshperspect.a020420.

    Article  PubMed Central  Google Scholar 

  125. Zhou B, Zuo YX, Jiang RT. Astrocyte morphology: diversity, plasticity, and role in neurological diseases. CNS Neurosci Ther. 2019;25:665–73. https://doi.org/10.1111/cns.13123.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Huovinen J, Kastinen S, Komulainen S, Oinas M, Avellan C, Frantzen J, Rinne J, Ronkainen A, Kauppinen M, Lönnrot K, et al. Familial idiopathic normal pressure hydrocephalus. J Neurol Sci. 2016;368:11–8. https://doi.org/10.1016/j.jns.2016.06.052.

    Article  PubMed  Google Scholar 

  127. McGirr A, Cusimano MD. Familial aggregation of idiopathic normal pressure hydrocephalus: novel familial case and a family study of the NPH triad in an iNPH patient cohort. J Neurol Sci. 2012;321:82–8. https://doi.org/10.1016/j.jns.2012.07.062.

    Article  PubMed  Google Scholar 

  128. Morimoto Y, Yoshida S, Kinoshita A, Satoh C, Mishima H, Yamaguchi N, Matsuda K, Sakaguchi M, Tanaka T, Komohara Y, et al. Nonsense mutation in CFAP43 causes normal-pressure hydrocephalus with ciliary abnormalities. Neurology. 2019;92:e2364–74. https://doi.org/10.1212/wnl.0000000000007505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Portenoy RK, Berger A, Gross E. Familial occurrence of idiopathic normal-pressure hydrocephalus. Arch Neurol. 1984;41:335–7. https://doi.org/10.1001/archneur.1984.04050150117029.

    Article  CAS  PubMed  Google Scholar 

  130. Cusimano MD, Rewilak D, Stuss DT, Barrera-Martinez JC, Salehi F, Freedman M. Normal-Pressure Hydrocephalus: Is There a Genetic Predisposition? Can J Neurol Sci/Journal Canadien des Sciences Neurologiques. 2011;38:274–81. https://doi.org/10.1017/s031716710001146x.

    Article  CAS  PubMed  Google Scholar 

  131. Takahashi Y, Kawanami T, Nagasawa H, Iseki C, Hanyu H, Kato T. Familial normal pressure hydrocephalus (NPH) with an autosomal-dominant inheritance: a novel subgroup of NPH. J Neurol Sci. 2011;308:149–51. https://doi.org/10.1016/j.jns.2011.06.018.

    Article  PubMed  Google Scholar 

  132. Sato H, Takahashi Y, Kimihira L, Iseki C, Kato H, Suzuki Y, Igari R, Sato H, Koyama S, Arawaka S, et al. A segmental copy number loss of the SFMBT1 gene is a genetic risk for shunt-responsive, idiopathic normal pressure hydrocephalus (iNPH): a case-control study. PLoS ONE. 2016;11: e0166615. https://doi.org/10.1371/journal.pone.0166615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tang S, Wang X, Li W, Yang X, Li Z, Liu W, Li C, Zhu Z, Wang L, Wang J, et al. Biallelic mutations in CFAP43 and CFAP44 cause male infertility with multiple morphological abnormalities of the sperm flagella. Am J Hum Genet. 2017;100:854–64. https://doi.org/10.1016/j.ajhg.2017.04.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Coutton C, Vargas AS, Amiri-Yekta A, Kherraf Z-E, Ben Mustapha SF, Le Tanno P, Wambergue-Legrand C, Karaouzène T, Martinez G, Crouzy S, et al. Mutations in CFAP43 and CFAP44 cause male infertility and flagellum defects in Trypanosoma and human. Nat Commun. 2018;9. https://doi.org/10.1038/s41467-017-02792-7.

  135. Yang HW, Lee S, Yang D, Dai H, Zhang Y, Han L, Zhao S, Zhang S, Ma Y, Johnson MF, et al. Deletions in CWH43 cause idiopathic normal pressure hydrocephalus. EMBO Mol Med. 2021;13. https://doi.org/10.15252/emmm.202013249.

Download references

Funding

This chapter was supported by the Ministry of Health of the Czech Republic institutional grant no. NU23-04-00551.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondřej Bradáč .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bubeníková, A., Skalický, P., Bradáč, O. (2023). Pathophysiology of NPH. In: Bradac, O. (eds) Normal Pressure Hydrocephalus. Springer, Cham. https://doi.org/10.1007/978-3-031-36522-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36522-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36521-8

  • Online ISBN: 978-3-031-36522-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics