Skip to main content

Imaging Differential Diagnosis of Adult-Onset Hydrocephalus

  • Chapter
  • First Online:
Normal Pressure Hydrocephalus

Abstract

As clinical presentation of adult-onset hydrocephalus varies, imaging modalities often provide the first evidence of its presence. Features of increased intraventricular pressure can be subtle, especially early on in the disease course, and knowledge of radiologically relevant anatomy is important. When the presence of hydrocephalus is established, the next step is to determine its aetiology. This includes the assessment of which parts of the CSF spaces are involved, whether there is an obstruction and where it is located, if there are other signs of altered CSF hydrodynamics, or if there are secondary complications related to hydrocephalus. For optimal evaluation of hydrocephalus, a standardised protocol including flow-sensitive and high-resolution imaging should be employed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A phenomenon of flow-related signal loss in MRI due to time-of-flight and spin-phase effects. While disliked by some authors, the term “flow-voids” is in widespread clinical use and for the sake of conciseness, we will use the term in this book as well.

  2. 2.

    As opposed to cartesian readout, employed in the standard T2 FSE/TSE sequences.

  3. 3.

    Defined as head circumference above 98th percentile adjusted for sex [27]. For males, this is 53.8 cm and for females 52.9 cm.

Abbreviations

BRAVO:

Brain Volume Imaging

bSSFP:

Balanced steady-state free precession

CISS:

Constructive Interference in the Steady State

CSF:

Cerebrospinal fluid

CT:

Computed tomography

DESH:

Disproportionately Enlarged Subarachnoid space Hydrocephalus

DWI:

Diffusion-weighted imaging

EDH:

Epidural hematoma

ETL:

Echo train length

FIESTA:

Fast Imaging Employing Steady State Acquisition

FIESTA-C:

Fast Imaging Employing Steady State Acquisition-Constructive Interference

FLAIR:

Fluid attenuated inversion recovery

FSE:

Fast spin echo

iNPH:

Idiopathic Normal Pressure Hydrocephalus

LIAS:

Late-onset idiopathic aqueductal stenosis

LOVA:

Long-standing Overt Ventriculomegaly in Adults

MPR:

MultiPlanar Reconstruction

MPRAGE:

Magnetization Prepared RApid Gradient Echo

MR:

Magnetic Resonance

MRI:

Magnetic Resonance Imaging

PC:

Phase Contrast

PROPELLER:

Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction

ROI:

Region of Interest

SDH:

Subdural hematoma

SNR:

Signal to noise ratio

SPACE:

Sampling Perfection with Application optimized Contrasts using different flip angle Evolution

SSFP:

Steady-state free precession

SWI:

Susceptibility weighted imaging

TE:

Echo time

TSE:

Turbo spin echo

References

  1. Ucar M, Guryildirim M, Tokgoz N, Kilic K, Borcek A, Oner Y, Akkan K, Tali T. Evaluation of aqueductal patency in patients with hydrocephalus: three-dimensional high-sampling-efficiency technique (SPACE) versus two-dimensional turbo spin echo at 3 Tesla. Korean J Radiology: Official J Korean Radiol Soc. 2014;15(6):827–35. https://doi.org/10.3348/kjr.2014.15.6.827.

    Article  Google Scholar 

  2. Stratchko L, Filatova I, Agarwal A, Kanekar S. The ventricular system of the brain: anatomy and normal variations. Semin Ultrasound CT MR. 2016;37(2):72–83. https://doi.org/10.1053/j.sult.2016.01.004.

    Article  PubMed  Google Scholar 

  3. Born CM, Meisenzahl EM, Frodl T, Pfluger T, Reiser M, Möller HJ, Leinsinger GL. The septum pellucidum and its variants. An MRI study: an MRI study. European Archives of Psychiatry and Clinical Neurosci 2004;254(5):295–302. https://doi.org/10.1007/s00406-004-0496-z

  4. Donauer E, Moringlane JR, Ostertag CB. Cavum vergae cyst as a cause of hydrocephalus, ?Almost Forgotten??: successful stereotactic treatment. Acta Neurochir. 1986;83(1–2):12–9. https://doi.org/10.1007/bf01420502.

    Article  CAS  PubMed  Google Scholar 

  5. Funaki T, Makino Y, Arakawa Y, Hojo M, Kunieda T, Takagi Y, Takahashi JC, Miyamoto S. Arachnoid cyst of the velum interpositum originating from tela choroidea. Surg Neurol Int. 2012;3(1):120. https://doi.org/10.4103/2152-7806.102334.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Damle NR, Ikuta T, John M, Peters BD, DeRosse P, Malhotra AK, Szeszko PR. Relationship among interthalamic adhesion size, thalamic anatomy and neuropsychological functions in healthy volunteers. Brain Struct Funct. 2017;222(5):2183–92. https://doi.org/10.1007/s00429-016-1334-6.

    Article  PubMed  Google Scholar 

  7. Missori P, Paolini S, Peschillo S, Mancarella C, Scafa AK, Rastelli E, Martini S, Fattapposta F, Currà A. Temporal horn enlargements predict secondary hydrocephalus diagnosis earlier than Evans’ index. Tomography: A J Imaging Res 2022;8(3):1429–1436. https://doi.org/10.3390/tomography8030115

  8. Kim H, Jeong E-J, Park D-H, Czosnyka Z, Yoon BC, Kim K, Czosnyka M, Kim D-J. Finite element analysis of periventricular lucency in hydrocephalus: extravasation or transependymal CSF absorption? J Neurosurg. 2016;124(2):334–41. https://doi.org/10.3171/2014.11.JNS14138.

    Article  PubMed  Google Scholar 

  9. Sze G, De Armond SJ, Brant-Zawadzki M, Davis RL, Norman D, Newton TH. Foci of MRI signal (pseudo lesions) anterior to the frontal horns: histologic correlations of a normal finding. AJR Am J Roentgenol. 1986;147(2):331–7. https://doi.org/10.2214/ajr.147.2.331.

    Article  CAS  PubMed  Google Scholar 

  10. Krauss JK, Regel JP, Vach W, Jüngling FD, Droste DW, Wakhloo AK. Flow void of cerebrospinal fluid in idiopathic normal pressure hydrocephalus of the elderly: can it predict outcome after shunting? Neurosurgery 1997;40(1). 67–73; discussion 73–4. https://doi.org/10.1097/00006123-199701000-00015

  11. Krejčí T, Krejčí O, Mrůzek M, Röschlová I, Lipina R. Non-communicating hydrocephalus with a primary empty sella presenting with growth hormone deficiency and delayed puberty successfully treated by endoscopic third ventriculocisternostomy. Acta Neurochir. 2021;163(2):511–4. https://doi.org/10.1007/s00701-020-04481-9.

    Article  PubMed  Google Scholar 

  12. Pettersson DR, Hagen KS, Sathe NC, Clark BD, Spencer DC. MR imaging features of middle cranial Fossa encephaloceles and their associations with epilepsy. AJNR Am J Neuroradiol. 2020;41(11):2068–74. https://doi.org/10.3174/ajnr.A6798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tenny S, Thorell W. Colloid brain cyst. In StatPearls [Internet]. StatPearls Publishing; 2022.

    Google Scholar 

  14. Raz E, Fatterpekar G, Davis AJ, Huang PP, Loh JP. Mystery case: idiopathic bilateral stenosis of the foramina of Monro. Neurology. 2012;79(18):e166–7. https://doi.org/10.1212/WNL.0b013e318271f792.

    Article  PubMed  Google Scholar 

  15. Gomez-Ruiz N, Polidura MC, Crespo Rodriguez AM, Arrazola García J. Idiopathic stenosis of foramina of Monro in an asymptomatic adult patient: a rare entity radiologists should be aware of. BJR Case Reports. 2020;6(2):20190102. https://doi.org/10.1259/bjrcr.20190102.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Elwatidy SM, Albakr AA, Al Towim AA, Malik SH. Tumors of the lateral and third ventricle: surgical management and outcome analysis in 42 cases. Neurosciences (Riyadh, Saudi Arabia) 2017;22(4):274–281. https://doi.org/10.17712/nsj.2017.4.20170149

  17. Fukuhara T, Luciano MG. Clinical features of late-onset idiopathic aqueductal stenosis. Surgical Neurol. 2001;55(3):132–136. discussion 136–7. https://doi.org/10.1016/s0090-3019(01)00359-7

  18. Sufianov R, Pitskhelauri D, Bykanov A. Fourth ventricle tumors: a review of series treated with microsurgical technique. Front Surgery 2022;9:915253. https://doi.org/10.3389/fsurg.2022.915253

  19. Panagopoulos D, Karydakis P, Themistocleous M. The entity of the trapped fourth ventricle: a review of its history, pathophysiology, and treatment options. Brain Circulation. 2021;7(3):147–58. https://doi.org/10.4103/bc.bc_30_21.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kuo L-T, Huang AP-H. The pathogenesis of hydrocephalus following aneurysmal subarachnoid hemorrhage. Int J Mol Sci. 2021;22(9):5050. https://doi.org/10.3390/ijms22095050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Haldorsen IS, Espeland A, Larsson E-M. Central nervous system lymphoma: characteristic findings on traditional and advanced imaging. AJNR Am J Neuroradiol. 2011;32(6):984–92. https://doi.org/10.3174/ajnr.A2171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boshrabadi AP, Naiem A, Ghazi Mirsaeid SS, Yarandi KK, Amirjamshidi A. Hydrocephalus as the sole presentation of primary diffuse large B-cell lymphoma of the brain: report of a case and review of literature. Surg Neurol Int. 2017;8(1):165. https://doi.org/10.4103/sni.sni_446_16.

    Article  PubMed  PubMed Central  Google Scholar 

  23. De Macêdo LP, Ferreira USM, Ferreira YDO, de Carvalho Júnior EV, Faquini IV, Almeida NS, Azevedo-Filho HRC. Erdheim-Chester disease with intracranial involvement causing hydrocephalus: case report. Interdisciplinary Neurosurgery: Adv Techniques and Case Managem. 2020;21(100722): 100722. https://doi.org/10.1016/j.inat.2020.100722.

    Article  Google Scholar 

  24. Fujimura M, Onuma T, Kameyama M, Motohashi O, Kon H, Yamamoto K, Ishii K, Tominaga T. Hydrocephalus due to cerebrospinal fluid overproduction by bilateral choroid plexus papillomas. Child’s Nervous Syst: ChNS: Official J Int Soc Pediatric Neurosurgery. 2004;20(7):485–8. https://doi.org/10.1007/s00381-003-0889-8.

    Article  Google Scholar 

  25. Kiefer M, Eymann R, Steudel WI. LOVA hydrocephalus—a new entity of chronic hydrocephalus. Nervenarzt. 2002;73(10):972–81. https://doi.org/10.1007/s00115-002-1389-x.

    Article  CAS  PubMed  Google Scholar 

  26. Palandri G, Carretta A, La Corte E, Giannini G, Martinoni M, Mantovani P, Albini-Riccioli L, Tonon C, Mazzatenta D, Elder BD, Conti A. Open-aqueduct LOVA, LIAS, iNPH: a comparative clinical-radiological study exploring the “grey zone” between different forms of chronic adulthood hydrocephalus. Acta Neurochir. 2022;164(7):1777–88. https://doi.org/10.1007/s00701-022-05215-9.

    Article  PubMed  Google Scholar 

  27. Oi S, Shimoda M, Shibata M, Honda Y, Togo K, Shinoda M, Tsugane R, Sato O. Pathophysiology of long-standing overt ventriculomegaly in adults. J Neurosurg. 2000;92(6):933–40. https://doi.org/10.3171/jns.2000.92.6.0933.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This chapter was supported by the Ministry of Health of the Czech Republic institutional grant no. NU23-04–00551.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondřej Bradáč .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sedlák, V., Vlasák, A., Skalický, P., Bubeníková, A., Bradáč, O. (2023). Imaging Differential Diagnosis of Adult-Onset Hydrocephalus. In: Bradac, O. (eds) Normal Pressure Hydrocephalus. Springer, Cham. https://doi.org/10.1007/978-3-031-36522-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36522-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36521-8

  • Online ISBN: 978-3-031-36522-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics