Skip to main content

Non-invasive Positive Airway Pressure and Non-invasive Ventilation in Acute Cardiogenic Pulmonary Edema

  • Chapter
  • First Online:
Non-invasive Mechanical Ventilation in Critical Care, Anesthesiology and Palliative Care

Abstract

Significant respiratory failure is mainly observed in patients with Acute Cardiogenic Pulmonary Edema (ACPE) or cardiogenic shock. Ventilation support has played a central role in the treatment of selected patients with acute respiratory failure due to acute cardiogenic pulmonary edema. The application of positive intrathoracic pressure through an interface has shown to be useful in the treatment of moderate to severe respiratory failure. There are various modalities of ventilation support: Continuous Positive Airway Pressure (CPAP), Non-Invasive Ventilation (NIV), and Hight Flow Nasal Cannula (HFNC). These modalities have shown to be effective in ACPE, leading to a reduction of respiratory distress and an endotracheal intubation rate compared to conventional oxygen therapy. Appropriate equipment and experience are needed. Now, the growing role of these techniques in the acute care setting has led to the development of innovations to overcome problems related to gas leakage and dead space, improving the quality of the devices and optimizing ventilation modes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Heart Association. Heart disease and stroke statistics—2005 update. Dallas: American Heart Association; 2005.

    Google Scholar 

  2. Felker GM, Adams KF Jr, Konstam MA, O’Connor CM, Gheorghiade M. The problem of decompensated heart failure: nomenclature, classification, and risk stratification. Am Heart J. 2003;145:S18–25.

    Article  PubMed  Google Scholar 

  3. Girou E, Brun-Buisson C, Taillé S, Lemaire F, Brochard L. Secular trends in nosocomial infections and mortality associated with noninvasive ventilation in patients with exacerbation of COPD and pulmonary edema. JAMA. 2003;290(22):2985–91.

    Article  CAS  PubMed  Google Scholar 

  4. Stevenson R, Ranjadayalan K, Wilkinson P, Roberts R, Timmis AD. Short and long term prognosis of acute myocardial infarction since introduction of thrombolysis. BMJ. 1993;307(6900):349–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. British Thoracic Society Standards of Care Committee. Non-invasive ventilation in acute respiratory failure. Thorax. 2002;57(3):192–211.

    Article  Google Scholar 

  6. Katz JA, Marks JD. Inspiratory work with and without continuous positive airway pressure in patients with acute respiratory failure. Anesthesiology. 1985;63(6):598–607.

    Article  CAS  PubMed  Google Scholar 

  7. Baratz DM, Westbrook PR, Shah PK, Mohsenifar Z. Effect of nasal continuous positive airway pressure on cardiac output and oxygen delivery in patients with congestive heart failure. Chest. 1992;102(5):1397–401.

    Article  CAS  PubMed  Google Scholar 

  8. Lenique F, Habis M, Lofaso F, DuboisRandé JL, Harf A, Brochard L. Ventilatory and hemodynamic effects of continuous positive airway pressure in left heart failure. Am J Respir Crit Care Med. 1997;155(2):500–5.

    Article  CAS  PubMed  Google Scholar 

  9. Naughton MT, Rahman MA, Hara K, Floras JS, Bradley TD. Effect of continuous positive airway pressure on intrathoracic and left ventricular transmural pressures in patients with congestive heart failure. Circulation. 1995;91(6):1725–31.

    Article  CAS  PubMed  Google Scholar 

  10. Powell J, Graham D, O’Reilly S, Punton G. Acute pulmonary oedema. Nurs Stand. 2016;30(23):51–9.

    Article  PubMed  Google Scholar 

  11. Sureka B, Bansal K, Arora A. Pulmonary edema-cardiogenic or noncardiogenic? J Family Med Prim Care. 2015;4(2):290.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Murray JF. Pulmonary edema: pathophysiology and diagnosis. Int J Tuberc Lung Dis. 2011;15(2):155–60.

    CAS  PubMed  Google Scholar 

  13. Sibbald WJ, Anderson RR, Holliday RL. Pathogenesis of pulmonary edema associated with the adult respiratory distress syndrome. Can Med Assoc J. 1979;120(4):445–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Nielsen LS, Svanegaard J, Wiggers P, Egeblad H. The yield of a diagnostic hospital dyspnoea clinic for the primary health care section. J Intern Med. 2001;250(5):422–8.

    Article  CAS  PubMed  Google Scholar 

  15. Cleland JG, Yassin AS, Khadjooi K. Acute heart failure: focusing on acute cardiogenic pulmonary oedema. Clin Med. 2010;10(1):59–64.

    Article  Google Scholar 

  16. O’Driscoll BR, Howard LS, Earis J, et al. BTS guideline for oxygen use in adults in healthcare and emergency settings. Thorax. 2017;72:ii1–ii90.

    Article  PubMed  Google Scholar 

  17. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, Falk V, Filippatos G, Fonseca C, Gomez-Sanchez MA, Jaarsma T, Køber L, Lip GY, Maggioni AP, Parkhomenko A, Pieske BM, Popescu BA, Rønnevik PK, Rutten FH, Schwitter J, Seferovic P, Stepinska J, Trindade PT, Voors AA, Zannad F, Zeiher A. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the heart failure association (HFA) of the ESC. Eur Heart J. 2012;33(14):1787–847.

    Article  PubMed  Google Scholar 

  18. National Clinical Guideline Centre (UK). Acute heart failure. Diagnosing and managing acute heart failure in adults, 2014;

    Google Scholar 

  19. Rochwerg B, Brochard L, Elliott MW, Hess D, Hill NS, Nava S, Navalesi P, Antonelli M, Brozek J, Conti G, Ferrer M, Guntupalli K, Jaber S, Keenan S, Mancebo J, Mehta S, Raoof S. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J. 2017;50(2):1602426.

    Article  PubMed  Google Scholar 

  20. Chawla R, Dixit SB, Zirpe KG, Chaudhry D, Khilnani GC, Mehta Y, Khatib KI, Jagiasi BG, Chanchalani G, Mishra RC, Samavedam S, Govil D, Gupta S, Prayag S, Ramasubban S, Dobariya J, Marwah V, Sehgal I, Jog SA, Kulkarni AP. ISCCM guidelines for the use of non-invasive ventilation in acute respiratory failure in adult ICUs. Indian J Crit Care Med. 2020;24:61–81.

    Article  Google Scholar 

  21. Akashiba T, Ishikawa Y, Ishihara H, Imanaka H, Ohi M, Ochiai R, Kasai T, Kimura K, Kondoh Y, Sakurai S, Shime N, Suzukawa M, Takegami M, Takeda S, Tasaka S, Taniguchi H, Chohnabayashi N, Chin K, Tsuboi T, Tomii K, Narui K, Hasegawa N, Hasegawa R, Ujike Y, Kubo K, Hasegawa Y, Momomura SI, Yamada Y, Yoshida M, Takekawa Y, Tachikawa R, Hamada S, Murase K. The Japanese respiratory society noninvasive positive pressure ventilation (NPPV) guidelines (second revised edition). Respir Investig. 2017;55(1):83–92.

    Article  PubMed  Google Scholar 

  22. Wang Y, Brown J, Godfrey C, Ahmad M, Vital FMR, Lambiase P, Banerjee A, Bakhai A, Chong M. Non-invasive positive pressure ventilation (CPAP or bilevel NPPV) for cardiogenic pulmonary oedema. Cochrane Database Syst Rev. 2019;4(4):CD005351.

    PubMed  Google Scholar 

  23. Rochwerg B, Brochard L, Elliott MW, et al. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J. 2017;50(2):1602426.

    Article  PubMed  Google Scholar 

  24. Sharp JT, Griffith GT, Bunnell IL, et al. Ventilatory mechanics in pulmonary edema in man. J Clin Invest. 1958;37(1):111–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aubier M, Trippenbach T, Roussos C. Respiratory muscle fatigue during cardiogenic shock. J Appl Physiol. 1981;51(2):499–508.

    Article  CAS  PubMed  Google Scholar 

  26. Field S, Kelly SM, Macklem PT. The oxygen cost of breathing in patients with cardiorespiratory disease. Am Rev Respir Dis. 1982;126(1):9–13.

    CAS  PubMed  Google Scholar 

  27. Räsänen J, Heikkilä J, Downs J, et al. Continuous positive airway pressure by face mask in acute cardiogenic pulmonary edema. Am J Cardiol. 1985;325(26):1825–30.

    Google Scholar 

  28. Naughton MT, Rahman MA, Hara K, et al. Effect of continuous positive airway pressure on intrathoracic and left ventricular transmural pressures in patients with congestive heart failure. Circulation. 1995;91(6):1725–31.

    Article  CAS  PubMed  Google Scholar 

  29. Bendjelid K, Schütz N, Suter PM, et al. Does continuous positive airway pressure by face mask improve patients with acute cardiogenic pulmonary edema due to left ventricular diastolic dysfunction? Chest. 2005;127(3):1053–8.

    Article  PubMed  Google Scholar 

  30. Dhainaut JF, Devaux JY, Monsallier JF, et al. Mechanisms of decreased left ventricular preload during continuous positive pressure ventilation in ARDS. Chest. 1986;90(1):74–80.

    Article  CAS  PubMed  Google Scholar 

  31. Schuster S, Erbel R, Weilemann LS, et al. Hemodynamics during PEEP ventilation in patients with severe left ventricular failure studied by transesophageal echocardiography. Chest. 1990;97(5):1181–9.

    Article  CAS  PubMed  Google Scholar 

  32. Leithner C, Podolsky A, Globits S, et al. Magnetic resonance imaging of the heart during positive end-expiratory pressure ventilation in normal subjects. Crit Care Med. 1994;22(3):426–32.

    Article  CAS  PubMed  Google Scholar 

  33. Guyton AC. Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol Rev. 1955;35(1):123–9.

    Article  CAS  PubMed  Google Scholar 

  34. Guyton AC, Lindsey AW, Abernathy B, et al. Venous return at various right atrial pressures and the normal venous return curve. Am J Phys. 1957;189(3):609–15.

    CAS  Google Scholar 

  35. Magder S. Volume and its relationship to cardiac output and venous return. Crit Care. 2016;20(1):271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cournand A, Motley HL, Werkio L, et al. Physiological studies of the effects of intermittent positive pressure breathing on cardiac output in man. Am J Phys. 1948;152(1):162–74.

    CAS  Google Scholar 

  37. Braunwald E, Binion JT, Morgan WL, et al. Alterations in central blood volume and cardiac output induced by positive pressure breathing counteracted by metaraminol (Aramine). Circ Res. 1957;5(6):670–5.

    Article  CAS  PubMed  Google Scholar 

  38. Fessler HE, Brower RG, Wise RA, et al. Effects of positive end-expiratory pressure on the gradient for venous return. Am Rev Respir Dis. 1991;143(1):19–24.

    Article  CAS  PubMed  Google Scholar 

  39. Nanas S, Magder S. Adaptations of the peripheral circulation to PEEP. Am Rev Respir Dis. 1992;146(3):688–93.

    Article  CAS  PubMed  Google Scholar 

  40. Brienza N, Revelly JP, Ayuse T, et al. Effects of PEEP on liver arterial and venous blood flows. Am J Respir Crit Care Med. 1995;152(2):504–10.

    Article  CAS  PubMed  Google Scholar 

  41. Gray A, Goodacre S, Newby DE, et al. Noninvasive ventilation in acute cardiogenic pulmonary edema. N Engl J Med. 2008;359(2):142–51.

    Article  CAS  PubMed  Google Scholar 

  42. Potts JM. Noninvasive positive pressure ventilation: effect on mortality in acute cardiogenic pulmonary edema: a pragmatic meta-analysis. Pol Arch Med Wewn. 2009;119(6):349–53.

    PubMed  Google Scholar 

  43. Weng CL, Zhao YT, Liu QH, et al. Meta-analysis: noninvasive ventilation in acute cardiogenic pulmonary edema. Ann Intern Med. 2010;152(9):590–600.

    Article  PubMed  Google Scholar 

  44. Mariani J, Macchia A, Belziti C, et al. Noninvasive ventilation in acute cardiogenic pulmonary edema: a meta-analysis of randomized controlled trials. J Card Fail. 2011;17(10):850–9.

    Article  PubMed  Google Scholar 

  45. Vital FM, Ladeira MT, Atallah AN. Non-invasive positive pressure ventilation (CPAP or bilevel NPPV) for cardiogenic pulmonary oedema. Cochrane Database Syst Rev. 2013;5:CD005351.

    Google Scholar 

  46. Cabrini L, Landoni G, Oriani A, et al. Noninvasive ventilation and survival in acute care settings: a comprehensive systematic review and metaanalysis of randomized controlled trials. Crit Care Med. 2015;43(4):880–8.

    Article  PubMed  Google Scholar 

  47. Mehta S, Jay GD, Woolard RH, et al. Randomized, prospective trial of bilevel versus continuous positive airway pressure in acute pulmonary edema. Crit Care Med. 1997;25(4):620–8.

    Article  CAS  PubMed  Google Scholar 

  48. Sinderby C, Navalesi P, Beck J, et al. Neural control of mechanical ventilation in respiratory failure. Nat Med. 1999;5(12):1433–6.

    Article  CAS  PubMed  Google Scholar 

  49. Parke RL, McGuinness SP. Pressures delivered by nasal high flow oxygen during all phases of the respiratory cycle. Respir Care. 2013;58(10):1621–4.

    Article  PubMed  Google Scholar 

  50. Chanques G, Riboulet F, Molinari N, et al. Comparison of three high flow oxygen therapy delivery devices: a clinical physiological cross-over study. Minerva Anestesiol. 2013;79(12):1344–55.

    CAS  PubMed  Google Scholar 

  51. Nava S, Navalesi P, Conti G. Time of non-invasive ventilation. Intensive Care Med. 2006;32:361.

    Article  PubMed  Google Scholar 

  52. Collaborative Research Group of Noninvasive Mechanical Ventilation for Chronic Obstructive Pulmonary Disease. Early use of non-invasive positive pressure ventilation for acute exacerbations of chronic obstructive pulmonary disease: a multicentre randomized controlled trial. Chin Med J. 2005;118:2034.

    Google Scholar 

  53. Ozsancak Ugurlu A, Sidhom SS, Khodabandeh A, et al. Use and outcomes of noninvasive positive pressure ventilation in acute care hospitals in Massachusetts. Chest. 2014;145:964.

    Article  PubMed  Google Scholar 

  54. Thompson J, Petrie DA, Ackroyd-Stolarz S, Bardua DJ. Out-of-hospital continuous positive airway pressure ventilation versus usual care in acute respiratory failure: a randomized controlled trial. Ann Emerg Med. 2008;52:232.

    Article  PubMed  Google Scholar 

  55. Roessler MS, Schmid DS, Michels P, et al. Early out-of-hospital non-invasive ventilation is superior to standard medical treatment in patients with acute respiratory failure: a pilot study. Emerg Med J. 2012;29:409.

    Article  PubMed  Google Scholar 

  56. Plaisance P, Pirracchio R, Berton C, et al. A randomized study of out-of-hospital continuous positive airway pressure for acute cardiogenic pulmonary oedema: physiological and clinical effects. Eur Heart J. 2007;28:2895.

    Article  CAS  PubMed  Google Scholar 

  57. Goodacre S, Stevens JW, Pandor A, et al. Prehospital noninvasive ventilation for acute respiratory failure: systematic review, network meta-analysis, and individual patient data meta-analysis. Acad Emerg Med. 2014;21:960.

    Article  PubMed  Google Scholar 

  58. Bakke SA, Botker MT, Riddervold IS, et al. Continuous positive airway pressure and noninvasive ventilation in prehospital treatment of patients with acute respiratory failure: a systematic review of controlled studies. Scand J Trauma Resusc Emerg Med. 2014;22:69.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Aguilar SA, Lee J, Dunford JV, et al. Assessment of the addition of prehospital continuous positive airway pressure (CPAP) to an urban emergency medical services (EMS) system in persons with severe respiratory distress. J Emerg Med. 2013;45:210.

    Article  PubMed  Google Scholar 

  60. Mal S, McLeod S, Iansavichene A, et al. Effect of out-of-hospital noninvasive positive-pressure support ventilation in adult patients with severe respiratory distress: a systematic review and meta-analysis. Ann Emerg Med. 2014;63:600.

    Article  PubMed  Google Scholar 

  61. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GM, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2016;37(27):2129–200.

    Article  PubMed  Google Scholar 

  62. Brusasco C, Corradi F, De Ferrari A, Ball L, Kacmarek RM, Pelosi P. CPAP device for emergency prehospital use: a bench study. Respir Care. 2015;60(12):1777–85.

    Article  PubMed  Google Scholar 

  63. Vargas M, Marra A, Vivona L, Ball L, Marinò V, Pelosi P, Servillo G. Performances of CPAP devices with an oronasal mask. Respir Care. 2018;63(8):1033–9.

    Article  PubMed  Google Scholar 

  64. Park JH, Balmain S, Berry C, et al. Potentially detrimental cardiovascular effects of oxygen in patients with chronic left ventricular systolic dysfunction. Heart. 2010;96:553.

    Article  Google Scholar 

  65. Rodríguez Mulero L, Carrillo Alcaraz A, Melgarejo Moreno A, Renedo Villarroya A, Párraga Ramírez M, Jara Pérez P, Millán MJ, González DG. Predictive factors related to success of noninvasive ventilation and mortality in the treatment of acute cardiogenic pulmonary edema. Med Clin (Barc). 2005;124(4):126–31.

    Article  PubMed  Google Scholar 

  66. Hess DR. Patent-ventilator interaction during noninvasive ventilation. Respir Care. 2011;56(2):153–65.

    Article  PubMed  Google Scholar 

  67. Thille A, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32(10):1515–22.

    Article  PubMed  Google Scholar 

  68. Vignaux L, Vargas F, Roeseler J, Tassaux D, Thille AW, Kossowsky MP, Brochard L, Jolliet P. Patient-ventilator asynchrony during non-invasive ventilation for acute respiratory failure: a multicenter study. Intensive Care Med. 2009;35(5):840–6.

    Article  PubMed  Google Scholar 

  69. Di Marco F, Centanni S, Bellone A, Messinesi G, Pesci A, Scala R, Perren A. Nava S optimization of ventilator setting by flow and pressure waveforms analysis during noninvasive ventilation for acute exacerbations of COPD: a multicentric randomized controlled trial. Crit Care. 2011;15(6):R283.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lichtenstein D, Me’zie’re G, Biderman P, Gepner A, Barre´ O. The comet-tail artifact. An ultrasound sign of alveolar-interstitial syndrome. Am J Respir Crit Care Med. 1997;156(5):1640–6.

    Article  CAS  PubMed  Google Scholar 

  71. Jambrik Z, Monti S, Coppola V, Agricola E, Mottola G, Miniati M, Picano E. Usefulness of ultrasound lung comets as a nonradiologic sign of extravascular lung water. Am J Cardiol. 2004;93(10):1265–70.

    Article  PubMed  Google Scholar 

  72. Picano E, Frassi F, Agricola E, Gligorova S, Gargani L, Mottola G. Ultrasound lung comets: a clinically useful sign of extravascular lung water. J Am Soc Echocardiogr. 2006;19(3):356–63.

    Article  PubMed  Google Scholar 

  73. Volpicelli G, Elbarbary M, Blaivas M, Lichtenstein DA, Mathis G, Kirkpatrick AW, Melniker L, Gargani L, Noble VE, Via G, Dean A, Tsung JW, Soldati G, Copetti R, Bouhemad B, Reissig A, Agricola E, Rouby JJ, Arbelot C, Liteplo A, Sargsyan A, Silva F, Hoppmann R, Breitkreutz R, Seibel A, Neri L, Storti E, Petrovic T. International liaison committee on lung ultrasound (ILC-LUS) for international consensus conference on lung ultrasound (ICC-LUS). International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med. 2012;38(4):577–91.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Coviello, A., Golino, L., Spasari, E. (2023). Non-invasive Positive Airway Pressure and Non-invasive Ventilation in Acute Cardiogenic Pulmonary Edema. In: Servillo, G., Vargas, M. (eds) Non-invasive Mechanical Ventilation in Critical Care, Anesthesiology and Palliative Care. Springer, Cham. https://doi.org/10.1007/978-3-031-36510-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36510-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36509-6

  • Online ISBN: 978-3-031-36510-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics