Skip to main content

Abstract

Dyspnea is a frequent cause of prehospital emergency services activation. These patients frequently develop respiratory failure and about 10% reached the hospital with oxygen saturation (SpO2) of <92%, despite standard oxygen therapy. Mortality increased linearly with the distance to the hospital.

Acute respiratory failure in prehospital settings can be treated with non-invasive ventilation (NIV). The best candidate is an awake patient in respiratory distress who is alert and cooperative and has an intact gag reflex. Patients with chronic obstructive pulmonary disease (COPD) and cardiogenic pulmonary edema (CPE) are most likely to benefit from it.

NIV is generally safe, has a lower rate of complications, and requires minimal additional time to apply for a well-trained emergency team. Appropriate use of early intervention can reduce the need for intubation and ventilation, can reduce breathlessness, improve arterial blood gases, and decrease mortality, morbidity, and in-hospital length of stay, which could possibly reduce health care costs.

The available evidence of advantages of prehospital NIV is still limited. Special training programs for emergency physicians are a prerequisite for successful out-of-hospital use of NIV to guarantee correct administration of the therapy and optimal selection of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parshall MB, et al. An official American thoracic society statement: update on the mechanisms, assessment, and management of dyspnea. Am J Respir Crit Care Med. 2012;185(4):435–52. https://doi.org/10.1164/rccm.201111-2042ST.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Laribi S, et al. Epidemiology of patients presenting with dyspnea to emergency departments in Europe and the Asia-Pacific region. Eur J Emerg Med. 2019;26(5):345–9. https://doi.org/10.1097/MEJ.0000000000000571.

    Article  PubMed  Google Scholar 

  3. Prekker ME, et al. The epidemiology and outcome of prehospital respiratory distress. Acad Emerg Med. 2014;21(5):543–50. https://doi.org/10.1111/acem.12380.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pandor A, et al. Pre-hospital non-invasive ventilation for acute respiratory failure: a systematic review and cost-effectiveness evaluation. Health Technol Assess. 2015;19(42) v–vi:1–102. https://doi.org/10.3310/hta19420.

    Article  Google Scholar 

  5. Baudouin S, Blumenthal S, Cooper B, Davidson C, Davison A, Elliott M, et al. Non-invasive ventilation in acute respiratory failure –British thoracic society standards of care committee. Thorax. 2002;57:192–211.

    Article  Google Scholar 

  6. Maio RF, Garrison HG, Spaite DW, Desmond JS, Gregor MA, Cayten CG, Chew JL Jr, Hill EM, Joyce SM, MacKenzie EJ, et al. Emergency medical services outcomes project I (EMSOP I): prioritizing conditions for outcomes research. Ann Emerg Med. 1999;33(4):423–32.

    Article  CAS  PubMed  Google Scholar 

  7. Nicholl J, West J, Goodacre S, Turner J. The relationship between distance to hospital and patient mortality in emergencies: an observational study. Emerg Med J. 2007;24(9):665–8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang HE, Davis DP, O’Connor RE, Domeier RM. Drug-assisted intubation in the prehospital setting (resource document to NAEMSP position statement). Prehosp Emerg Care. 2006;10(2):261–71. https://doi.org/10.1080/10903120500541506.

    Article  PubMed  Google Scholar 

  9. Scala R, Pisani L. Noninvasive ventilation in acute respiratory failure: which recipe for success? Eur Respir Rev. 2018;27:180029. https://doi.org/10.1183/16000617.0029-2018.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rochwerg B, Brochard L, Elliott MW, et al. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J. 2017;50:1602426. https://doi.org/10.1183/13993003.02426-2016.

    Article  PubMed  Google Scholar 

  11. Fuller GW, et al. The ACUTE (ambulance CPAP: use, treatment effect and economics) feasibility study: a pilot randomised controlled trial of prehospital CPAP for acute respiratory failure. Pilot Feasibility Stud. 2018;4:86. https://doi.org/10.1186/s40814-018-0281-9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Garuti G, et al. Out-of-hospital helmet CPAP in acute respiratory failure reduces mortality: a study led by nurses. Monaldi Arch Chest Dis. 2010;73(4):145–51. https://doi.org/10.4081/monaldi.2010.283.

    Article  CAS  PubMed  Google Scholar 

  13. Thompson J, et al. Out-of-hospital continuous positive airway pressure ventilation versus usual care in acute respiratory failure: a randomized controlled trial. Ann Emerg Med. 2008;52(3):232–41., 241.e1. https://doi.org/10.1016/j.annemergmed.2008.01.006.

    Article  PubMed  Google Scholar 

  14. Hensel M, et al. Prehospital non-invasive ventilation in acute respiratory failure is justified even if the distance to hospital is short. Am J Emerg Med. 2019;37(4):651–6. https://doi.org/10.1016/j.ajem.2018.07.001.

    Article  PubMed  Google Scholar 

  15. Masip J, et al. Indications and practical approach to non-invasive ventilation in acute heart failure. Eur Heart J. 2018;39:17–25. https://doi.org/10.1093/eurheartj/ehx580.

    Article  PubMed  Google Scholar 

  16. Sullivan CE, Issa FG, Berthon-Jones M, Eves L. Reversal of obstructive sleep apnoea by con-tinuous positive airway pressure applied through the nares. Lancet. 1981;1(8225):862–5. https://doi.org/10.1016/s0140-6736(81)92140-1.

    Article  CAS  PubMed  Google Scholar 

  17. Gnugnoli DM, Singh A, Shafer K. EMS Field Intubation. StatPearls; 2021.

    Google Scholar 

  18. Mazen J, Sayed E, et al. Impact of prehospital mechanical ventilation. A retrospective matched cohort study of 911 calls in the United States. Medicine (Baltimore). 2019;98(4):e13990. https://doi.org/10.1097/MD.0000000000013990.

    Article  Google Scholar 

  19. Plaisance P, et al. A randomized study of out-of-hospital continuous positive airway pressure for acute cardiogenic pulmonary oedema: physiological and clinical effects. Eur Heart J. 2007;28:2895–901. https://doi.org/10.1093/eurheartj/ehm502.

    Article  CAS  PubMed  Google Scholar 

  20. Brusasco, et al. CPAP devices for emergency prehospital use: a bench study. Respir Care. 2015;60(12):1777–85. https://doi.org/10.4187/respcare.04134.

    Article  PubMed  Google Scholar 

  21. L’Her E, et al. Bench-test comparison of 26 emergency and transport ventilators. Crit Care. 2014;18:506. http://ccforum.com/content/18/5/506

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fludger S, FRCA MBCBBS(H), Klein A, FRCA MBBS. Portable ventilators. Contin Educ Anaesth Crit Care Pain. 2008;8(6):199–203. https://doi.org/10.1093/bjaceaccp/mkn039.

    Article  Google Scholar 

  23. MacIntyre NR, et al. Physiologic effects of noninvasive ventilation. Respir Care. 2019;64(6):617–28. https://doi.org/10.4187/respcare.06635.

    Article  PubMed  Google Scholar 

  24. Holets SR, Davies JD. Should a portable ventilator be used in all in-hospital transports? Respir Care. 2016;61(6):839–53. https://doi.org/10.4187/respcare.04745.

    Article  PubMed  Google Scholar 

  25. BaHammam AS, Deep Singh T, Gupta R, Pandi-Perumal SR. Choosing the proper interface for positive airway pressure therapy in subjects with acute respiratory failure. Respir Care. 2018;63(2):227–37. https://doi.org/10.4187/respcare.05787.

    Article  PubMed  Google Scholar 

  26. Gay PC, et al. Complications of noninvasive ventilation in acute care. Respir Care. 2009;54(2):246–57.

    PubMed  Google Scholar 

  27. Rodriguez E, et al. Clinical review: helmet and non-invasive mechanical ventilation in critically ill patients. Crit Care. 2013;17:223. http://ccforum.com/content/17/2/223

    Article  Google Scholar 

  28. Dilken O, et al. Noninvasive ventilation: challenges and pitfalls. EMJ Respir. 2018;6(1):100–8.

    Article  Google Scholar 

  29. Patel BK, Wolfe KS, Pohlman AS, Hall JB, Kress JP. Effect of noninvasive ventilation delivered by helmet vs face mask on the rate of endotracheal intubation in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA. 2016;315(22):2435–41. https://doi.org/10.1001/jama.2016.6338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tatham KC, Ko M, Palozzi L, et al. Helmet interface increases lung volumes at equivalent ventilator pressures compared to the face mask interface during non-invasive ventilation. Crit Care. 2020;24:504. https://doi.org/10.1186/s13054-020-03216-7.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Foti G, et al. Is helmet CPAP first line pre-hospital treatment of presumed severe acute pulmonary edema? Intensive Care Med. 2009;35(4):656–62. https://doi.org/10.1007/s00134-008-1354-7.

    Article  PubMed  Google Scholar 

  32. Schlapbach LJ, et al. High-flow nasal cannula (HFNC) support in interhospital transport of critically ill children. Intensive Care Med. 2014;40(4):592–9. https://doi.org/10.1007/s00134-014-3226-7.

    Article  PubMed  Google Scholar 

  33. Drake MG, et al. High-flow nasal cannula oxygen in adults: an evidence-based assessment. Ann Am Thorac Soc. 2018;15(2):145–55. https://doi.org/10.1513/AnnalsATS.201707-548FR.

    Article  PubMed  Google Scholar 

  34. Díaz-Lobato S, Perales JMC, et al. Things to keep in mind in high flow therapy: as usual the devil is in the detail. Int J Crit Care Emerg Med. 2018;4:048. https://doi.org/10.23937/2474-3674/1510048.

    Article  Google Scholar 

  35. Mauri T, Alban L, Turrini C, et al. Optimum support by high-flow nasal cannula in acute hypoxemic respiratory failure: effects of increasing flow rates. Intensive Care Med. 2017;43:1453.

    Article  CAS  PubMed  Google Scholar 

  36. Austin MA, Wills KE. Effect of continuous positive airway pressure on mortality in the treatment of acute cardiogenic pulmonary edema in the prehospital setting: randomized controlled trial. Acad Emerg Med. 2012;19(Suppl. 1):283(abstract 534).

    Google Scholar 

  37. Ducros L, Logeart D, Vicaut E, Henry P, Plaisance P, Collet JP, et al. CPAP for acute cardiogenic pulmonary oedema from out-of-hospital to cardiac intensive care unit: a randomised multicentre study. Intensive Care Med. 2011;37:1501–9. https://doi.org/10.1007/s00134-011-2311-4.

    Article  PubMed  Google Scholar 

  38. Frontin P, Bounes V, Houze-Cerfon CH, Charpentier S, Houze-Cerfon V, Ducasse JL. Continuous positive airway pressure for cardiogenic pulmonary edema: a randomized study. Am J Emerg Med. 2011;29:775–81. https://doi.org/10.1016/j.ajem.2010.03.007.

    Article  PubMed  Google Scholar 

  39. Mas A, Alonso G, Perez C, Saura P, Alcoverro JM, Guirado M. Non-invasive mechanical ventilation for acute dyspnea in out-of-hospital emergency care. Intensive Care Med. 2002;28:S69 (abstract 256).

    Google Scholar 

  40. Plaisance P, Pirracchio R, Berton C, Vicaut E, Payen D. A randomized study of out-of-hospital continuous positive airway pressure for acute cardiogenic pulmonary oedema: physiological and clinical effects. Eur Heart J. 2007;28:2895–901. https://doi.org/10.1093/eurheartj/ehm502.

    Article  CAS  PubMed  Google Scholar 

  41. Roessler MS, Schmid DS, Michels P, Schmid O, Jung K, Stober J, et al. Early out-of-hospital non-invasive ventilation is superior to standard medical treatment in patients with acute respiratory failure: a pilot study. Emerg Med J. 2012;29:409–14. https://doi.org/10.1136/emj.2010.106393.

    Article  PubMed  Google Scholar 

  42. Schmidbauer W, Ahlers O, Spies C, Dreyer A, Mager G, Kerner T. Early prehospital use of non-invasive ventilation improves acute respiratory failure in acute exacerbation of chronic obstructive pulmonary disease. Emerg Med J. 2011;28:626–7. https://doi.org/10.1136/emj.2009.089102.

    Article  PubMed  Google Scholar 

  43. Thompson J, Petrie DA, Ackroyd-Stolarz S, Bardua DJ. Out-of-hospital continuous positive airway pressure ventilation versus usual care in acute respiratory failure: a randomized controlled trial. Ann Emerg Med. 2008;52:232–41. https://doi.org/10.1016/j.annemergmed.2008.01.006.

    Article  PubMed  Google Scholar 

  44. Craven RA, Singletary N, Bosken L, Sewell E, Payne M, Lipsey R. Use of bilevel positive airway pressure in out-of-hospital patients. Acad Emerg Med. 2000;7:1065–8. https://doi.org/10.1111/j.1553-2712.2000.tb02102.x.

    Article  CAS  PubMed  Google Scholar 

  45. Weitz G, Struck J, Zonak A, Balnus S, Perras B, Dodt C. Prehospital noninvasive pressure support ventilation for acute cardiogenic pulmonary edema. Eur J Emerg Med. 2007;14:276–9. https://doi.org/10.1097/MEJ.0b013e32826fb377.

    Article  PubMed  Google Scholar 

  46. Sinuff T, Cook DJ, Hill NS. Does noninvasive positive pressure ventilation improve outcome in acute hypoxemic respiratory failure? A systematic review. Crit Care Med. 2004;32:2516.

    Article  PubMed  Google Scholar 

  47. Devlin JW, Nava S, Fong JJ, Bahhady I, Hill NS. Survey of sedation practices during noninvasive positive-pressure ventilation to treat acute respiratory failure. Crit Care Med. 2007;35(10):2298–302.

    Article  PubMed  Google Scholar 

  48. Daily JC, Wang HE. Noninvasive positive pressure ventilation: resource document for the national association of EMS physicians position statement. Prehosp Emerg Care. 2011;15(3):432–8. https://doi.org/10.3109/10903127.2011.569851.

    Article  PubMed  Google Scholar 

  49. Mal S, McLeod S, Iansavichene A, Dukelow A, Lewell M. Effect of out-of-hospital noninva-sive positive-pressure support ventilation in adult patients with severe respiratory distress: a systematic review and meta-analysis. Ann Emerg Med. 2014;63(5):600–7. e601

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taddei, E. et al. (2023). Non-invasive Mechanical Ventilation in Prehospital Medicine. In: Servillo, G., Vargas, M. (eds) Non-invasive Mechanical Ventilation in Critical Care, Anesthesiology and Palliative Care. Springer, Cham. https://doi.org/10.1007/978-3-031-36510-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36510-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36509-6

  • Online ISBN: 978-3-031-36510-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics