Skip to main content

Abstract

Atelectasis, postoperative pneumonia, pulmonary edema, acute respiratory failure are common postoperative pulmonary complications and are a significant issue increasing hospital length of stay, morbidity, mortality, and healthcare costs (Chiumello et al., Intensive Care Med 37:918–929, 2011; Magnusson, Br J Anaesth 91:61–72, 2003). General anesthesia usually induces atelectasis in the most dependent parts of the lung, near the diaphragm and lower lobes, because of the reduction in lung gas volumes (Chiumello et al., Intensive Care Med 37:918–929, 2011). Atelectasis can persist for days in the postoperative period and may contribute to significant impaired oxygenation, increased shunting, and decreased pulmonary compliance (Magnusson, Br J Anaesth 91:61–72, 2003).

Hyperinflation during mechanical ventilation or a deep breath in spontaneous ventilation substantially reduces atelectasis (Magnusson, Br J Anaesth 91:61–72, 2003).

Diaphragm, abdominal and thoracic respiratory muscles weakness, caused by surgery, neuromuscular blocking drugs, mechanical ventilation, and postoperative pain, will occur in the first hours after surgery and may persist up to weeks; this condition is associated with an increase in carbon dioxide, ventilation-perfusion mismatching, hypoxemia and could lead to Acute Respiratory Failure (ARF) (Chiumello et al., Intensive Care Med 37:918–929, 2011; Magnusson, Br J Anaesth 91:61–72, 2003). ARF severity depends on preoperative pulmonary conditions and perioperative-related ventilatory impairment.

For Intensive Care Unit (ICU), specialists are mandatory to prevent pulmonary complications and when ARF occurs to avoid reintubation because of several studies have shown that major respiratory problems are related to invasive mechanical ventilation (Riou et al., Anesthesiology 112:453–61, 2010). Intubation and reintubation, rather than duration of respiratory support, expose the patient to a greater probability of lung complications (Feltracco et al., Transplant Proc 40:1979–1982, 2008). The goal is to ensure oxygen administration and carbon dioxide removal without endotracheal tube or tracheotomy using Noninvasive Ventilation (NIV) to prevent ARF occurrence (prophylactic treatment) or to treat ARF (Riou et al., Anesthesiology 112:453–61, 2010).

Organ transplantation became every year more the optimal therapy for patients affected by end-stage organ failure. Preventing organ rejection is challenging and remains the main transplantation’s problem but pulmonary complication contributes significantly to overall morbidity and mortality. Approximately 5% of patients undergoing renal, hepatic, cardiac, or pulmonary transplantation develop pneumonia in the period after transplantation, which has an associated crude mortality of 37% (Antonelli et al., JAMA 283:235–41, 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Canet E, Osman D, Lambert J, et al. Acute respiratory failure in kidney transplant recipients: a multicenter study. Crit Care. 2011;15(2):R91. https://doi.org/10.1186/cc10091.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pretto EA, Biancofiore G, DeWolf A, Niemann C, Klinck PDS JR. Oxford textbook of transplant anaesthesia and critical care. Oxford University Press; 2015.

    Book  Google Scholar 

  3. Tu G, He H, Yin K, Ju M, Zheng Y, Zhu D, Luo Z. High-flow nasal cannula versus noninvasive ventilation for treatment of acute hypoxemic respiratory failure in renal transplant recipients. Transplant Proc. 2017;49:1325–30.

    Article  CAS  PubMed  Google Scholar 

  4. Tirado Conde G. Implications of non-invasive mechanical ventilation in lung transplantation. Old and new frontiers? Int J Pulm Respir Sci. 2017;1(1):IJOPRS.MS.ID.555555. https://doi.org/10.19080/ijoprs.2017.01.555555.

    Article  Google Scholar 

  5. Feltracco P, Serra E, Barbieri S, Milevoj M, Salvaterra F, Marulli G, Ori C. Noninvasive ventilation in adult liver transplantation. Transplant Proc. 2008;40:1979–82.

    Article  CAS  PubMed  Google Scholar 

  6. Hourani JM, Bellamy PE, Tashkin DP, Batra P, Simmons MS. Pulmonary dysfunction in advanced liver disease: frequent occurrence of an abnormal diffusing capacity. Am J Med. 1991;90:693–700.

    Article  CAS  PubMed  Google Scholar 

  7. Battaglia SE, Pretto JJ, Irving LB, Jones RM, Angus PW. Resolution of gas exchange abnormalities and intrapulmonary shunting following liver transplantation. Hepatology. 1997;25:1228–32.

    Article  CAS  PubMed  Google Scholar 

  8. Celikel T, Sungur M, Ceyhan B, Karakurt S. Comparison of noninvasive positive pressure ventilation with standard medical therapy in hypercapnic acute respiratory failure. Chest. 1998;114:1636–42.

    Article  CAS  PubMed  Google Scholar 

  9. Hill NS. Noninvasive ventilation. Does it work, for whom, and how? Am Rev Respir Dis. 1993;147:1050–5.

    Article  CAS  PubMed  Google Scholar 

  10. Lenique F, Habis M, Lofaso F, Dubois-Randé JL, Harf A, Brochard L. Ventilatory and hemodynamic effects of continuous positive airway pressure in left heart failure. Am J Respir Crit Care Med. 1997;155:500–5.

    Article  CAS  PubMed  Google Scholar 

  11. Waldhorn RE. Nocturnal nasal intermittent positive pressure ventilation with bi-level positive airway pressure (BiPAP) in respiratory failure. Chest. 1992;101:516–21.

    Article  CAS  PubMed  Google Scholar 

  12. Antonelli M, Conti G, Pelosi P, Gregoretti C, Pennisi MA, Costa R, Severgnini P, Chiaranda M, Proietti R. New treatment of acute hypoxemic respiratory failure: noninvasive pressure support ventilation delivered by helmet--a pilot controlled trial. Crit Care Med. 2002;30:602–8.

    Article  PubMed  Google Scholar 

  13. Murase K, Chihara Y, Takahashi K, Okamoto S, Segawa H, Fukuda K, Tanaka K, Uemoto S, Mishima M, Chin K. Use of noninvasive ventilation for pediatric patients after liver transplantation: decrease in the need for reintubation. Liver Transplant. 2012;18:1217–25.

    Article  Google Scholar 

  14. Group TLT. Unilateral lung transplantation for pulmonary fibrosis. N Engl J Med. 1986;314:1140–5.

    Article  Google Scholar 

  15. Force SD, Kilgo P, Neujahr DC, Pelaez A, Pickens A, Fernandez FG, Miller DL, Lawrence C. Bilateral lung transplantation offers better long-term survival, compared with single-lung transplantation, for younger patients with idiopathic pulmonary fibrosis. Ann Thorac Surg. 2011;91:244–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cooper JD, Patterson GA, Trulock EP. Results of single and bilateral lung transplantation in 131 consecutive recipients. Washington university lung transplant group. J Thorac Cardiovasc Surg. 1994;107:460–1.

    Article  CAS  PubMed  Google Scholar 

  17. Feltracco P, Serra E, Barbieri S, Milevoj M, Furnari M, Rizzi S, Rea F, Marulli G, Ori C. Noninvasive ventilation in postoperative care of lung transplant recipients. Transplant Proc. 2009;41:1339–44.

    Article  CAS  PubMed  Google Scholar 

  18. Rocco M, Conti G, Antonelli M, Bufi M, Costa MG, Alampi D, Ruberto F, Stazi GV, Pietropaoli P. Non-invasive pressure support ventilation in patients with acute respiratory failure after bilateral lung transplantation. Intensive Care Med. 2001;27:1622–6.

    Article  CAS  PubMed  Google Scholar 

  19. Feltracco P, Serra E, Barbieri S, Milevoj M, Michieletto E, Carollo C, Rea F, Zanus G, Boetto R, Ori C. Noninvasive high-frequency percussive ventilation in the prone position after lung transplantation. Transplant Proc. 2012;44:2016–21.

    Article  CAS  PubMed  Google Scholar 

  20. Lucangelo U, Fontanesi L, Antonaglia V, Pellis T, Berlot G, Liguori G, Bird FM, Gullo A. High-frequency percussive ventilation (HFPV). Principles and technique. Minerva Anestesiol. 2003;69.: 841–8:848–51.

    Google Scholar 

  21. Gauthier JM, Hachem RR, Kreisel D. Update on chronic lung allograft dysfunction. Curr Transplant Rep. 2016;3:185–91.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Magalhães AR, Moreira I, Caldeira V, Sá T, Borba A, Calvinho P, Semedo L, Cardoso J, Fragata J. Non-invasive ventilation post lung transplantation in a home setting. Eur Respir J. 2020;56:403.

    Google Scholar 

  23. Rabin J, Kaczorowski DJ. Perioperative management of the cardiac transplant recipient. Crit Care Clin. 2019;35:45–60.

    Article  PubMed  Google Scholar 

  24. Liu Q, Shan M, Liu J, Cui L, Lan C. Prophylactic noninvasive ventilation versus conventional care in patients after cardiac surgery. J Surg Res. 2020;246:384–94.

    Article  PubMed  Google Scholar 

  25. Chew HC, Kumarasinghe G, Iyer A, et al. Primary graft dysfunction after heart transplantation. Curr Transplant Rep. 2014;1:257–65.

    Article  Google Scholar 

  26. Vega E, Schroder J, Nicoara A. Postoperative management of heart transplantation patients. Best Pract Res Clin Anaesthesiol. 2017;31:201–13.

    Article  PubMed  Google Scholar 

  27. Simsch O, Gromann T, Knosalla C, Hübler M, HL RH. No title the intensive care management of patients following heart transplantation at the Deutsches Herzzentrum Berlin. Appl Cardiopulm Pathophysiol. 2011;15:230–40.

    Google Scholar 

  28. De Wet CJ, Affleck DG, Jacobsohn E, Avidan MS, Tymkew H, Hill LL, Zanaboni PB, Moazami N, Smith JR. Inhaled prostacyclin is safe, effective, and affordable in patients with pulmonary hypertension, right heart dysfunction, and refractory hypoxemia after cardiothoracic surgery. J Thorac Cardiovasc Surg. 2004;127:1058–67.

    Article  PubMed  Google Scholar 

  29. Guarracino F, Ambrosino N. Non invasive ventilation in cardio-surgical patients. Minerva Anestesiol. 2011;77:734–41.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Giovanna Bignami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bignami, E.G. (2023). Non-invasive Ventilation in Solid Transplantation. In: Servillo, G., Vargas, M. (eds) Non-invasive Mechanical Ventilation in Critical Care, Anesthesiology and Palliative Care. Springer, Cham. https://doi.org/10.1007/978-3-031-36510-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36510-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36509-6

  • Online ISBN: 978-3-031-36510-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics