Skip to main content
  • 170 Accesses

Abstract

The use of NIV in ARDS patients seems effective in mild-to-moderate hypoxemia (PaO2/FiO2 > 150 mmHg), while no conclusive evidence has been found in patients with moderate to severe (PaO2/FiO2 < 150 mmHg) hypoxemia. Patients during NIV therapy must be assessed frequently to detect the early signs of NIV failure and to avoid delayed intubation. NIV is not recommended as first-line therapy in ARDS management, but may be useful in those with mild to moderate hypoxemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grieco LD, et al. Non-invasive ventilatory support and high-flow nasal oxygen as first-line treatment of acute hypoxemic respiratory failure and ARDS. Intensive Care Med. 2021;47:851–66. https://doi.org/10.1007/s00134-021-06459-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Definition Task Force ARDS, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307:2526–33. https://doi.org/10.1001/jama.2012.5669.

    Article  CAS  Google Scholar 

  3. Pham T, Pesenti A, Bellani G, et al. Outcome of acute Hypoxaemic respiratory failure. Eur Respir J, Insights from the Lung Safe Study. 2020;57(6):2003317. https://doi.org/10.1183/13993003.03317-2020.

    Article  CAS  Google Scholar 

  4. Ferreyro BL, Angriman F, Munshi L, et al. Association of noninvasive oxygenation strategies with all-cause mortality in adults with acute hypoxemic respiratory failure. JAMA. 2020;324:57. https://doi.org/10.1001/jama.2020.9524.

    Article  CAS  PubMed  Google Scholar 

  5. Rochwerg B, Einav S, Chaudhuri D, et al. The role for high flow nasal cannula as a respiratory support strategy in adults: a clinical practice guideline. Intensive Care Med. 2020;46:2226–37. https://doi.org/10.1007/s00134-020-06312-y.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Squadrone V, Coha M, Cerutti E, et al. Continuous positive airway pressure for treatment of postoperative hypoxemia: a randomized controlled trial. JAMA. 2005;293:589–95. https://doi.org/10.1001/jama.293.5.589.

    Article  CAS  PubMed  Google Scholar 

  7. Sassoon CSH, Zhu E, Caiozzo VJ. Assist-control mechanical ventilation attenuates ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med. 2004;170:626–32. https://doi.org/10.1164/rccm.200401-042OC.

    Article  PubMed  Google Scholar 

  8. Qvist J, Pontoppidan H, Wilson RS, et al. Hemodynamic responses to mechanical ventilation with PEEP: the effect of hypervolemia. Anesthesiology. 1975;42:45–55. https://doi.org/10.1097/00000542-197501000-00009.

    Article  CAS  PubMed  Google Scholar 

  9. Repesse X, Charron C, Vieillard-Baron A. Right ventricular failure in acute lung injury and acute respiratory distress syndrome. Minerva Anestesiol. 2012;78:941–8.

    CAS  PubMed  Google Scholar 

  10. Wrigge H, Zinserling J, Neumann P, et al. Spontaneous breathing improves lung aeration in oleic acid-induced lung injury. Anesthesiology. 2003;99:376–84. https://doi.org/10.1097/00000542-200308000-00019.

    Article  PubMed  Google Scholar 

  11. Ferrari S, Orlandi M, Avella M, et al. Effects of hydration on plasma concentrations of methotrexate in patients with osteosarcoma treated with high doses of methotrexate. Minerva Med. 1992;83:289–93. https://doi.org/10.1097/01.ccm.0000163226.34868.0a.

    Article  CAS  PubMed  Google Scholar 

  12. Putensen C, Zech S, Wrigge H, et al. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med. 2001;164:43–9. https://doi.org/10.1164/ajrccm.164.1.2001078.

    Article  CAS  PubMed  Google Scholar 

  13. Carteaux G, Millan-Guilarte T, De Prost N, et al. Failure of noninvasive ventilation for de novo acute hypoxemic respiratory failure: role of tidal volume. Crit Care Med. 2016;44:282–90. https://doi.org/10.1097/CCM.0000000000001379.

    Article  PubMed  Google Scholar 

  14. Frat J-P, Ragot S, Coudroy R, et al. Predictors of intubation in patients with acute hypoxemic respiratory failure treated with a noninvasive oxygenation strategy. Crit Care Med. 2018;46:208–15. https://doi.org/10.1097/CCM.0000000000002818.

    Article  PubMed  Google Scholar 

  15. Yoshida T, Fujino Y, Amato MBP, Kavanagh BP. Fifty years of research in ARDS. Spontaneous breathing during mechanical ventilation. Risks, mechanisms, and management. Am J Respir Crit Care Med. 2017;195:985–92. https://doi.org/10.1164/rccm.201604-0748CP.

    Article  PubMed  Google Scholar 

  16. Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195:438–42. https://doi.org/10.1164/rccm.201605-1081CP.

    Article  PubMed  Google Scholar 

  17. Yoshida T, Torsani V, Gomes S, et al. Spontaneous effort causesoccult pendelluft during mechanical ventilation. Am J Respir Crit CareMed. 2013;188:1420–7. https://doi.org/10.1164/rccm.201303-0539OC.

    Article  Google Scholar 

  18. Yoshida T, Roldan R, Beraldo MA, et al. Spontaneous effort during mechanical ventilation: maximal injury with less positive end-expiratory pressure. Crit Care Med. 2016;44:e678–88. https://doi.org/10.1097/CCM.0000000000001649.

    Article  PubMed  Google Scholar 

  19. Bhattacharya M, Kallet RH, Ware LB, Matthay MA. Negative-pressure pulmonary edema. Chest. 2016;150:927–33. https://doi.org/10.1016/j.chest.2016.03.043.

    Article  PubMed  Google Scholar 

  20. Goligher EC, Jonkman AH, Dianti J, et al. Clinical strategies for implementing lung and diaphragm-protective ventilation: avoiding insufficient and excessive effort. Intensive Care Med. 2020;46:2314–26. https://doi.org/10.1007/s00134-020-06288-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goligher EC, Brochard LJ, Reid WD, et al. Diaphragmatic myotrauma: a mediator of prolonged ventilation and poor patient outcomes in acute respiratory failure. Lancet Respir Med. 2019;7:90–8. https://doi.org/10.1016/S2213-2600(18)30366-7.

    Article  PubMed  Google Scholar 

  22. Carrillo A, Gonzalez-Diaz G, Ferrer M, et al. Non-invasive ventilation in community-acquired pneumonia and severe acute respiratory failure. Intensive Care Med. 2012;38:458–66. https://doi.org/10.1007/s00134-012-2475-6.

    Article  PubMed  Google Scholar 

  23. Demoule A, Girou E, Richard J-C, et al. Benefits and risks of success or failure of noninvasive ventilation. Intensive Care Med. 2006;32:1756–65. https://doi.org/10.1007/s00134-006-0324-1.

    Article  PubMed  Google Scholar 

  24. Frat J-P, Thille AW, Mercat A, et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med. 2015;372:2185–96. https://doi.org/10.1056/NEJMoa1503326.

    Article  CAS  PubMed  Google Scholar 

  25. Nava S, Hill N. Non-invasive ventilation in acute respiratory failure. Lancet. 2009;374:250–9. https://doi.org/10.1016/S0140-6736(09)60496-7.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bellani G, Laffey JG, Pham T, et al. Noninvasive ventilation of patients with acute respiratory distress syndrome. Insights from the LUNG SAFE study. Am J Respir Crit Care Med. 2017;195:67–77. https://doi.org/10.1164/rccm.201606-1306OC.

    Article  PubMed  Google Scholar 

  27. Goligher EC, Dres M, Patel BK, et al. Lung- and diaphragm-protective ventilation. Am J Respir Crit Care Med. 2020;202:950–61. https://doi.org/10.1164/rccm.202003-0655CP.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vaschetto R, Cammarota G, Colombo D, et al. Effects of propofol on patient-ventilator synchrony and interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med. 2014;42:74–82. https://doi.org/10.1097/CCM.0b013e31829e53dc.

    Article  CAS  PubMed  Google Scholar 

  29. Pattinson KTS. Opioids and the control of respiration. Br J Anaesth. 2008;100:747–58. https://doi.org/10.1093/bja/aen094.

    Article  CAS  PubMed  Google Scholar 

  30. Chanques G, Constantin J-M, Devlin JW, et al. Analgesia and sedation in patients with ARDS. Intensive Care Med. 2020;46:2342–56. https://doi.org/10.1007/s00134-020-06307-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Morais CCA, Koyama Y, Yoshida T, et al. High positive end expiratory pressure renders spontaneous effort noninjurious. Am J Respir Crit Care Med. 2018;197:1285–96. https://doi.org/10.1164/rccm.201706-1244OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Evans CL, Hill AV. The relation of length to tension development and heat production on contraction in muscle. J Physiol. 1914;49:10–6. https://doi.org/10.1113/jphysiol.1914.sp001684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tobin MJ, Laghi F, Jubran A. Why COVID-19 silent hypoxemia is baffling to physicians. Am J Respir Crit Care Med. 2020;202:356–60. https://doi.org/10.1164/rccm.202006-2157CP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Antonelli M, Conti G, Esquinas A, et al. A multiple-center survey on the use in clinical practice of noninvasive ventilation as a first-line intervention for acute respiratory distress syndrome. Crit Care Med. 2007;35:18–25. https://doi.org/10.1097/01.CCM.0000251821.44259.F3.

    Article  PubMed  Google Scholar 

  35. Antonelli M, Conti G, Moro ML, et al. Predictors of failure of noninvasive positive pressure ventilation in patients with acute hypoxemic respiratory failure: a multi-center study. Intensive Care Med. 2001;27:1718–28. https://doi.org/10.1007/s00134-001-1114-4.

    Article  CAS  PubMed  Google Scholar 

  36. Roca O, Caralt B, Messika J, et al. An index combining respiratory rate and oxygenation to predict outcome of nasal high-flow therapy. Am J Respir Crit Care Med. 2019;199:1368–76. https://doi.org/10.1164/rccm.201803-0589OC.

    Article  PubMed  Google Scholar 

  37. Duan J, Han X, Bai L, et al. Assessment of heart rate, acidosis, consciousness, oxygenation, and respiratory rate to predict noninvasive ventilation failure in hypoxemic patients. Intensive Care Med. 2017;43:192–9. https://doi.org/10.1007/s00134-016-4601-3.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nappi, S., Marra, A. (2023). NIV and ARDS. In: Servillo, G., Vargas, M. (eds) Non-invasive Mechanical Ventilation in Critical Care, Anesthesiology and Palliative Care. Springer, Cham. https://doi.org/10.1007/978-3-031-36510-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36510-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36509-6

  • Online ISBN: 978-3-031-36510-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics