Skip to main content

Non-invasive Ventilation in Acute and Chronic Obstructive Pulmonary Disease

  • Chapter
  • First Online:
Non-invasive Mechanical Ventilation in Critical Care, Anesthesiology and Palliative Care

Abstract

The utility of NIV in acute hypercapnic respiratory failure in COPD and ASMA is well-established and is included in the most recent international guidelines. Noninvasive approaches use a variety of mechanisms to restore the balance of the supply and demand of breathing work.

Indications for NIV in COPD are: tachypnea or increased work of breathing despite treatment with supplemental oxygen and nebulized bronchodilators; acute respiratory acidosis on blood gas analysis (pH <7.35; PaCO2 >45 mmHg); mild alteration in mental status, which is attributed solely to hypercapnia. Contraindications to NIV include hemodynamic instability or cardiopulmonary arrest; altered mental status not attributable to hypercapnia alone; poor secretion clearance, hemoptysis, active vomiting, upper gastrointestinal bleeding, or other airway compromise; recent facial surgery or trauma. Treatment with NIV has been shown to have reduce risks of mortality and endotracheal intubation, and hospital length of stay.

It is important to have markers to predict NIV failure prior to initiation of therapy, to either provide more intensive treatment in the form of invasive mechanical ventilation or allow a more conservative approach, if palliation is the most appropriate strategy.

In Asthma NIV is used, together with conventional pharmacological treatment, with the aim to decrease the respiratory muscle work that is much increased during the episodes of acute bronchoconstriction, off-setting intrinsic PEEP, alveolar recruitment, and to improve ventilation/perfusion mismatch, decrease the sensation of dyspnea, and ultimately avoid intubation and invasive mechanical ventilation. Caution should be exercised because some patients with severe asthma can deteriorate rapidly and develop very-severe obstruction, which makes ventilation difficult, even via the invasive route. If endotracheal intubation is inevitable, this should be performed immediately and without delay. It is therefore important that a trial of NIV is performed in an ICU setting by experienced personnel where endotracheal intubation can be performed quickly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Demoule A, et al. How to ventilate obstructive and asthmatic patients. Intensive Care Med. 2020;46(12):2436–49. https://doi.org/10.1007/s00134-020-06291-0.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Peñuelas O, et al. Inter-country variability over time in the mortality of mechanically ventilated patients. Intensive Care Med. 2020;46(3):444–53. https://doi.org/10.1007/s00134-019-05867-9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pendergraft TB, et al. Rates and characteristics of intensive care unit admissions and intubations among asthma-related hospitalizations. Ann Allergy Asthma Immunol. 2004;93(1):29–35. https://doi.org/10.1016/S1081-1206(10)61444-5.

    Article  PubMed  Google Scholar 

  4. Vassilakopoulos T, Toumpanakis D, Mancebo J. What’s new about pulmonary hyperinflation in mechanically ventilated critical patients. Intensive Care Med. 2020;46(12):2381–4. https://doi.org/10.1007/s00134-020-06105-3.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Junhasavasdikul D, et al. Expiratory flow limitation during mechanical ventilation. Chest. 2018;154(4):948–62. https://doi.org/10.1016/j.chest.2018.01.046.

    Article  PubMed  Google Scholar 

  6. Vassilakopoulos T. Understanding wasted/ineffective efforts in mechanically ventilated COPD patients using the campbell diagram. Intensive Care Med. 2008;34(7):1336–9. https://doi.org/10.1007/s00134-008-1095-7.

    Article  PubMed  Google Scholar 

  7. Marini JJ, Jaber S. Dynamic predictors of VILI risk: beyond the driving pressure. Intensive Care Med. 2016;42(10):1597–600. https://doi.org/10.1007/s00134-016-4534-x.

    Article  PubMed  Google Scholar 

  8. Marini JJ. Dynamic hyperinflation and auto-positive end-expiratory pressure lessons learned over 30 years. Am J Respir Crit Care Med. 2011;184(7):756–62. https://doi.org/10.1164/rccm.201102-0226PP.

    Article  PubMed  Google Scholar 

  9. Smith TC, Marini JJ. Impact of PEEP on lung mechanics and work of breathing in severe airflow obstruction. J Appl Physiol. 1988;65(4):1488–99. https://doi.org/10.1152/jappl.1988.65.4.1488.

    Article  CAS  PubMed  Google Scholar 

  10. Oddo M, Feihl F, Schaller MD, Perret C. Management of mechanical ventilation in acute severe asthma: practical aspects. Intensive Care Med. 2006;32(4):501–10. https://doi.org/10.1007/s00134-005-0045-x.

    Article  PubMed  Google Scholar 

  11. Young IH, Bye PTP. Gas exchange in disease: asthma, chronic obstructive pulmonary disease, cystic fibrosis, and interstitial lung disease. Compr Physiol. 2011;1(2):663–97. https://doi.org/10.1002/cphy.c090012.

    Article  PubMed  Google Scholar 

  12. Abroug F, et al. Association of left-heart dysfunction with severe exacerbation of chronic obstructive pulmonary disease: diagnostic performance of cardiac biomarkers. Am J Respir Crit Care Med. 2006;174(9):990–6. https://doi.org/10.1164/rccm.200603-380OC.

    Article  PubMed  Google Scholar 

  13. Cheyne WS, Williams AM, Harper MI, Eves ND. Heart-lung interaction in a model of COPD: importance of lung volume and direct ventricular interaction. Am J Physiol Heart Circ Physiol. 2016;311(6):H1367–74. https://doi.org/10.1152/ajpheart.00458.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cheyne WS, Gelinas JC, Eves ND. Hemodynamic effects of incremental lung hyperinflation. Am J Physiol Heart Circ Physiol. 2018;315(3):H474–81. https://doi.org/10.1152/ajpheart.00229.2018.

    Article  CAS  PubMed  Google Scholar 

  15. Dambrosio M, et al. Effects of positive end-expiratory pressure on right ventricular function in COPD patients during acute ventilatory failure. Intensive Care Med. 1996;22(9):923–32. https://doi.org/10.1007/BF02044117.

    Article  CAS  PubMed  Google Scholar 

  16. Georgopulos D, Giannouli E, Patakas D. Effects of extrinsic positive end-expiratory pressure on mechanically ventilated patients with chronic obstructive pulmonary disease and dynamic hyperinflation. Intensive Care Med. 1993;19(4):197–203. https://doi.org/10.1007/BF01694770.

    Article  Google Scholar 

  17. Liu J, et al. Cardiac dysfunction induced by weaning from mechanical ventilation: incidence, risk factors, and effects of fluid removal. Crit Care. 2016;20(1):369. https://doi.org/10.1186/s13054-016-1533-9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Corbridge TC, Hall JB. The assessment and management of adults with status asthmaticus. Am J Respir Crit Care Med. 1995;151(5):1296–316. https://doi.org/10.1164/ajrccm.151.5.7735578.

    Article  CAS  PubMed  Google Scholar 

  19. Chandra D, et al. Outcomes of noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease in the United States, 1998-2008. Am J Respir Crit Care Med. 2012;185(2):152–9. https://doi.org/10.1164/rccm.201106-1094OC.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rochwerg B, et al. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J. 2017;50(2):1602426. https://doi.org/10.1183/13993003.02426-2016.

    Article  PubMed  Google Scholar 

  21. Hill NS, Spoletini G, Schumaker G, Garpestad E. Noninvasive ventilatory support for acute hypercapnic respiratory failure. Respir Care. 2019;64(6):647–57. https://doi.org/10.4187/respcare.06931.

    Article  PubMed  Google Scholar 

  22. Davidson AC, et al. BTS/ICS guideline for the ventilatory management of acute hypercapnic respiratory failure in adults. Thorax. 2016;71 Suppl 2:ii1–35. https://doi.org/10.1136/thoraxjnl-2015-208209.

    Article  PubMed  Google Scholar 

  23. Lindenauer PK, et al. Outcomes associated with invasive and noninvasive ventilation among patients hospitalized with exacerbations of chronic obstructive pulmonary disease. JAMA Intern Med. 2014;174(12):1982–93. https://doi.org/10.1001/jamainternmed.2014.5430.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Osadnik CR, et al. Non-invasive ventilation for the management of acute hypercapnic respiratory failure due to exacerbation of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2017;7(7):CD004104. https://doi.org/10.1002/14651858.CD004104.pub4.

    Article  PubMed  Google Scholar 

  25. Keenan SP, Powers CE, McCormack DG. Noninvasive positive-pressure ventilation in patients with milder chronic obstructive pulmonary disease exacerbations: a randomized controlled trial. Respir Care. 2005;50(5):610–6.

    PubMed  Google Scholar 

  26. Barbé F, et al. Noninvasive ventilatory support does not facilitate recovery from acute respiratory failure in chronic obstructive pulmonary disease. Eur Respir J. 1996;9(6):1240–5. https://doi.org/10.1183/09031936.96.09061240.

    Article  PubMed  Google Scholar 

  27. Bardi G, et al. Nasal ventilation in COPD exacerbations: early and late results of a prospective, controlled study. Eur Respir J. 2000;15(1):98–104. https://doi.org/10.1034/j.1399-3003.2000.15a18.x.

    Article  CAS  PubMed  Google Scholar 

  28. Wood KA, Lewis L, Von Harz B, Kollef MH. The use of noninvasive positive pressure ventilation in the emergency department: results of a randomized clinical trial. Chest. 1998;113(5):1339–46. https://doi.org/10.1378/chest.113.5.1339.

    Article  CAS  PubMed  Google Scholar 

  29. O’Driscoll BR, Howard LS, Davison AG. BTS guideline for emergency oxygen use in adult patients. Thorax. 2008;63 Suppl 6:vi1–68. https://doi.org/10.1136/thx.2008.102947.

    Article  PubMed  Google Scholar 

  30. Girou E, Brun-Buisson C, Taillé S, Lemaire F, Brochard L. Secular trends in nosocomial infections and mortality associated with noninvasive ventilation in patients with exacerbation of COPD and pulmonary edema. J Am Med Assoc. 2003;290(22):2985–91. https://doi.org/10.1001/jama.290.22.2985.

    Article  CAS  Google Scholar 

  31. Girou E, et al. Association of noninvasive ventilation with nosocomial infections and survival in critically ill patients. J Am Med Assoc. 2000;284(18):2361–7. https://doi.org/10.1001/jama.284.18.2361.

    Article  CAS  Google Scholar 

  32. Conti G, et al. Noninvasive vs. conventional mechanical ventilation in patients with chronic obstructive pulmonary disease after failure of medical treatment in the ward: a randomized trial. Intensive Care Med. 2002;28(12):1701–7. https://doi.org/10.1007/s00134-002-1478-0.

    Article  CAS  PubMed  Google Scholar 

  33. Jurjević M, et al. Mechanical ventilation in chronic obstructive pulmonary disease patients, noninvasive vs. invasive method (randomized prospective study). Coll Antropol. 2009;33(3):791–7.

    PubMed  Google Scholar 

  34. Kramer N, Meyer TJ, Meharg J, Cece RD, Hill NS. Randomized, prospective trial of noninvasive positive pressure ventilation in acute respiratory failure. Am J Respir Crit Care Med. 1995;151(6):1799–806. https://doi.org/10.1164/ajrccm.151.6.7767523.

    Article  CAS  PubMed  Google Scholar 

  35. Appendini L, et al. Physiologic effects of positive end-expiratory pressure and mask pressure support during exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1994;149(5):1069–76. https://doi.org/10.1164/ajrccm.149.5.8173743.

    Article  CAS  PubMed  Google Scholar 

  36. Corrêa TD, et al. Performance of noninvasive ventilation in acute respiratory failure in critically ill patients: a prospective, observational, cohort study. BMC Pulm Med. 2015;15:144. https://doi.org/10.1186/s12890-015-0139-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Conti V, et al. Predictors of outcome for patients with severe respiratory failure requiring non invasive mechanical ventilation. Eur Rev Med Pharmacol Sci. 2015;19(20):3855–60.

    CAS  PubMed  Google Scholar 

  38. Mydin HH, Murphy S, Clague H, Sridharan K, Taylor IK. Anemia and performance status as prognostic markers in acute hypercapnic respiratory failure due to chronic obstructive pulmonary disease. Int J COPD. 2013;8:151–7. https://doi.org/10.2147/COPD.S39403.

    Article  Google Scholar 

  39. Cui J, et al. Nutritional risk screening 2002 as a predictor of outcome during general ward-based noninvasive ventilation in chronic obstructive pulmonary disease with respiratory failure. Med Sci Monit. 2015;21:2786–93. https://doi.org/10.12659/MSM.894191.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Antenora F, et al. Prevalence and outcomes of diaphragmatic dysfunction assessed by ultrasound technology during acute exacerbation of COPD: a pilot study. Respirology. 2017;22(2):338–44. https://doi.org/10.1111/resp.12916.

    Article  PubMed  Google Scholar 

  41. Ko BS, et al. Early failure of noninvasive ventilation in chronic obstructive pulmonary disease with acute hypercapnic respiratory failure. Intern Emerg Med. 2015;10(7):855–60. https://doi.org/10.1007/s11739-015-1293-6.

    Article  PubMed  Google Scholar 

  42. Leatherman J. Mechanical ventilation for severe asthma. Chest. 2015;147(6):1671–80. https://doi.org/10.1378/chest.14-1733.

    Article  PubMed  Google Scholar 

  43. Pallin M, Naughton MT. Noninvasive ventilation in acute asthma. J Crit Care. 2014;11(5):727–32. https://doi.org/10.1016/j.jcrc.2014.03.011.

    Article  Google Scholar 

  44. Sassoon CSH, Light RW, Lodia R, Sieck GC, Mahutte CK. Pressure-time product during continuous positive airway pressure, pressure support ventilation, and T-piece during weaning from mechanical ventilation. Am Rev Respir Dis. 1991;143(3):469–75. https://doi.org/10.1164/ajrccm/143.3.469.

    Article  CAS  PubMed  Google Scholar 

  45. Sydow M, et al. Effect of low-level PEEP on inspiratory work of breathing in intubated patients, both with healthy lungs and with COPD. Intensive Care Med. 1995;21(11):887–95. https://doi.org/10.1007/BF01712329.

    Article  CAS  PubMed  Google Scholar 

  46. Meduri GU, Cook TR, Turner RE, Cohen M, Leeper KV. Noninvasive positive pressure ventilation in status asthmaticus. Chest. 1996;110(3):767–74. https://doi.org/10.1378/chest.110.3.767.

    Article  CAS  PubMed  Google Scholar 

  47. Wang CH, et al. Differential effects of nasal continuous positive airway pressure on reversible or fixed upper and lower airway obstruction. Eur Respir J. 1996;9(5):952–9. https://doi.org/10.1183/09031936.96.09050952.

    Article  CAS  PubMed  Google Scholar 

  48. Soma T, Hino M, Kida K, Kudoh S. A prospective and randomized study for improvement of acute asthma by non-invasive positive pressure ventilation (NPPV). Intern Med. 2008;47(6):493–501. https://doi.org/10.2169/internalmedicine.47.0429.

    Article  PubMed  Google Scholar 

  49. Soroksky A, Stav D, Shpirer I. A pilot prospective, randomized, placebo-controlled trial of bilevel positive airway pressure in acute asthmatic attack. Chest. 2003;123(4):1018–25. https://doi.org/10.1378/chest.123.4.1018.

    Article  PubMed  Google Scholar 

  50. Gupta D, Nath A, Agarwal R, Behera D. A prospective randomized controlled trial on the efficacy of noninvasive ventilation in severe acute asthma. Respir Care. 2010;55(5):536–43.

    PubMed  Google Scholar 

  51. Guerin C, Milic-Emili J, Fournier G. Effect of PEEP on work of breathing in mechanically ventilated COPD patients. Intensive Care Med. 2000;26(9):1207–14. https://doi.org/10.1007/s001340051339.

    Article  CAS  PubMed  Google Scholar 

  52. Tokioka H, et al. Effectiveness of pressure support ventilation for mechanical ventilatory support in patients with status asthmaticus. Acta Anaesthesiol Scand. 1992;36(1):5–9. https://doi.org/10.1111/j.1399-6576.1992.tb03413.x.

    Article  CAS  PubMed  Google Scholar 

  53. Marini JJ. Should PEEP be used in airflow obstruction? Am Rev Respir Dis. 1989;140(1):1–3. https://doi.org/10.1164/ajrccm/140.1.1.

    Article  CAS  PubMed  Google Scholar 

  54. Lim WJ, et al. Non-invasive positive pressure ventilation for treatment of respiratory failure due to severe acute exacerbations of asthma. Cochrane Database Syst Rev. 2012;12:CD004360. https://doi.org/10.1002/14651858.cd004360.pub4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castellano, G., Marra, A., Palumbo, L., Melchionna, M., Servillo, G. (2023). Non-invasive Ventilation in Acute and Chronic Obstructive Pulmonary Disease. In: Servillo, G., Vargas, M. (eds) Non-invasive Mechanical Ventilation in Critical Care, Anesthesiology and Palliative Care. Springer, Cham. https://doi.org/10.1007/978-3-031-36510-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36510-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36509-6

  • Online ISBN: 978-3-031-36510-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics