Skip to main content

Arterial Revascularization

  • Chapter
  • First Online:
Limb Preservation for the Vascular Specialist

Abstract

A large proportion of patients in the stages of limb preservation suffer from peripheral arterial disease (PAD), which also is an important cause of cardiovascular morbidity and mortality, with increasing prevalence throughout the world. PAD is due to narrowing/occlusion of the arteries, particularly in the lower extremities, and can cause patients with rest pain or non-healing wounds to progress rapidly to major amputation, which carries a significantly high mortality rate. This is seen most commonly in patients with diabetes, renal failure, history of smoking, and hypertension and hypercholesterolemia. Prompt identification of patients with PAD, and specifically CLI/CLTI, followed by appropriate and aggressive revascularizations can help prevent major amputation. Over the decades, revascularization options have progressed from surgical options only, to now more often endovascular approaches. Notably, there has been a rapid increase in the development of new endovascular tools, techniques, and medical therapies for PAD. In this chapter, we discuss in detail both updated surgical and endovascular interventions from aortoiliac to pedal disease, including management of patients previously considered “no option.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sincos IR, da Silva ES, Ragazzo L, Belczak S, Nascimento LD, Puech-Leão P. Chronic thrombosed abdominal aortic aneurysms: a report on three consecutive cases and literature review. Clinics (Sao Paulo). 2009;64(12):1227–30.

    PubMed  Google Scholar 

  2. Lotto CE, Sharma G, Walsh JP, Shah SK, Nguyen LL, Ozaki CK, Menard MT, Belkin M. The impact of combined iliac occlusive disease and aortic aneurysm on open surgical repair. J Vasc Surg. 2020;71(6):2021–2028.e1.

    PubMed  Google Scholar 

  3. Wolf YG, Otis SM, Schwend RB, Bernstein EF. Screening for abdominal aortic aneurysms during lower extremity arterial evaluation in the vascular laboratory. J Vasc Surg. 1995;22(4):417–21. discussion 421-3

    CAS  PubMed  Google Scholar 

  4. Tuna Katırcıbaşı M, Güneş H, Çağrı Aykan A, Aksu E, Özgül S. Comparison of ultrasound guidance and conventional method for common femoral artery cannulation: a prospective study of 939 patients. Acta Cardiol Sin. 2018;34(5):394–8.

    PubMed  PubMed Central  Google Scholar 

  5. Arko F, McCollough R, Manning L, Buckley C. Use of intravascular ultrasound in the endovascular management of atherosclerotic aortoiliac occlusive disease. Am J Surg. 1996;172(5):546–9. discussion 549-50

    CAS  PubMed  Google Scholar 

  6. Pescatori LC, Tacher V, Kobeiter H. The use of re-entry devices in aortoiliac occlusive disease. Front Cardiovasc Med. 2020;7:144.

    PubMed  PubMed Central  Google Scholar 

  7. Price LZ, Safir SR, Faries PL, McKinsey JF, Tang GHL, Tadros RO. Shockwave lithotripsy facilitates large-bore vascular access through calcified arteries. J Vasc Surg Cases Innov Tech. 2020;7(1):164–70.

    PubMed  PubMed Central  Google Scholar 

  8. Bosch JL, Hunink MG. Meta-analysis of the results of percutaneous transluminal angioplasty and stent placement for aortoiliac occlusive disease. Radiology. 1997;204(1):87–96.

    CAS  PubMed  Google Scholar 

  9. Mwipatayi BP, Thomas S, Wong J, Temple SE, Vijayan V, Jackson M. Burrows SA; Covered Versus Balloon Expandable Stent Trial (COBEST) Co-investigators. A comparison of covered vs bare expandable stents for the treatment of aortoiliac occlusive disease. J Vasc Surg. 2011;54(6):1561–70.

    PubMed  Google Scholar 

  10. Mwipatayi BP, Sharma S, Daneshmand A, Thomas SD, Vijayan V, Altaf N, Garbowski M, Jackson M, COBEST co-investigators. Durability of the balloon-expandable covered versus bare-metal stents in the Covered versus Balloon Expandable Stent Trial (COBEST) for the treatment of aortoiliac occlusive disease. J Vasc Surg. 2016;64(1):83–94.e1.

    PubMed  Google Scholar 

  11. Mwipatayi BP, Ouriel K, Anwari T, Wong J, Ducasse E, Panneton JM, de Vries JPM, Dave R. A systematic review of covered balloon-expandable stents for treating aortoiliac occlusive disease. J Vasc Surg. 2020;72(4):1473–1486.e2.

    PubMed  Google Scholar 

  12. Van Haren RM, Goldstein LJ, Velazquez OC, Karmacharya J, Bornak A. Endovascular treatment of TransAtlantic Inter-Society Consensus D aortoiliac occlusive disease using unibody bifurcated endografts. J Vasc Surg. 2017;65(2):398–405.

    PubMed  Google Scholar 

  13. Jean-Baptiste E, Brizzi S, Bartoli MA, Sadaghianloo N, Baqué J, Magnan PE, Hassen-Khodja R. Pelvic ischemia and quality of life scores after interventional occlusion of the hypogastric artery in patients undergoing endovascular aortic aneurysm repair. J Vasc Surg. 2014;60(1):40–9. 49.e1

    PubMed  Google Scholar 

  14. Kalteis M, Gangl O, Huber F, Adelsgruber P, Kastner M, Lugmayr H. Clinical impact of hypogastric artery occlusion in endovascular aneurysm repair. Vascular. 2015;23(6):575–9. https://doi.org/10.1177/1708538114560462. Epub 2014 Nov 20

    Article  PubMed  Google Scholar 

  15. Smith AH, Dash S, Driscoll EC, Kirksey L, Rowse J, Hardy D, Lyden SP, Caputo FJ, Smolock CJ. Outcomes of hypogastric coverage and occlusion during endovascular treatment of aortoiliac occlusive disease. Ann Vasc Surg. 2021;77:116–26.

    PubMed  Google Scholar 

  16. Goverde PC, Grimme FA, Verbruggen PJ, Reijnen MM. Covered endovascular reconstruction of aortic bifurcation (CERAB) technique: a new approach in treating extensive aortoiliac occlusive disease. J Cardiovasc Surg. 2013;54(3):383–7.

    CAS  Google Scholar 

  17. Taeymans K, Goverde P, Lauwers K, Verbruggen P. The CERAB technique: tips, tricks and results. J Cardiovasc Surg. 2016;57(3):343–9. Epub 2016 Mar 24

    Google Scholar 

  18. Kruszyna, Lukasz & Stanišić, Michał-Goran & Dzieciuchowicz, Lukasz & Krasiński, Zbigniew. (2019). Results of the Covered Endovascular Repair of the Aortic Bifurcation (CERAB) Technique With BeGraft Balloon Expandable Covered Stent for Endovascular Treatment of Complex Aortoiliac Lesions. Eur J Vasc Endovasc Surg. 58:e813–e814.

    Google Scholar 

  19. Taeymans K, Groot Jebbink E, Holewijn S, Martens JM, Versluis M, Goverde PCJM, Reijnen MMPJ. Three-year outcome of the covered endovascular reconstruction of the aortic bifurcation technique for aortoiliac occlusive disease. J Vasc Surg. 2018;67(5):1438–47.

    PubMed  Google Scholar 

  20. Antonello M, Squizzato F, Piazza M. The Viabahn balloon expandable stent for endovascular reconstruction of the infrarenal aorta and its bifurcation in cases of severe obstructive disease. Vascular. 2021;29(1):40–4.

    PubMed  Google Scholar 

  21. Dijkstra ML, Goverde PC, Holden A, Zeebregts CJ, Reijnen MM. Initial experience with covered endovascular reconstruction of the aortic bifurcation in conjunction with chimney grafts. J Endovasc Ther. 2017;24(1):19–24.

    PubMed  Google Scholar 

  22. Shiloh AL, et al. Ultrasound-guided catheterization of the radial artery: a systematic review and meta-analysis of randomized controlled trials. Chest. 2011;139(3):524–9.

    PubMed  Google Scholar 

  23. Seto AH, et al. Real-time ultrasound guidance facilitates femoral arterial access and reduces vascular complications: FAUST (Femoral Arterial Access With Ultrasound Trial). JACC Cardiovasc Interv. 2010;3(7):751–8.

    PubMed  Google Scholar 

  24. Randolph AG, et al. Ultrasound guidance for placement of central venous catheters: a meta-analysis of the literature. Crit Care Med. 1996;24(12):2053–8.

    CAS  PubMed  Google Scholar 

  25. Hind D, et al. Ultrasonic locating devices for central venous cannulation: meta-analysis. BMJ. 2003;327(7411):361.

    PubMed  PubMed Central  Google Scholar 

  26. Abu-Fadel MS, et al. Fluoroscopy vs. traditional guided femoral arterial access and the use of closure devices: a randomized controlled trial. Catheter Cardiovasc Interv. 2009;74(4):533–9.

    PubMed  Google Scholar 

  27. Adam DJ, et al. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet. 2005;366(9501):1925–34.

    CAS  PubMed  Google Scholar 

  28. Edelman SK, editor. Understanding ultrasound physics : fundamentals and exam review. 2nd ed. Houston, TX: ESP; 1994. p. 391.

    Google Scholar 

  29. Saab F, et al. Chronic total occlusion crossing approach based on plaque cap morphology: the CTOP classification. J Endovasc Ther. 2018;25(3):284–91.

    PubMed  Google Scholar 

  30. Mustapha JA, et al. Comparison between angiographic and arterial duplex ultrasound assessment of tibial arteries in patients with peripheral arterial disease: on behalf of the Joint Endovascular and Non-Invasive Assessment of LImb Perfusion (JENALI) Group. J Invasive Cardiol. 2013;25(11):606–11.

    PubMed  Google Scholar 

  31. Hua WR, Yi MQ, Min TL, Feng SN, Xuan LZ, Xing J. Popliteal versus tibial retrograde access for subintimal arterial flossing with antegrade-retrograde intervention (SAFARI) technique. Eur J Vasc Endovasc Surg. 2013;46(2):249–54.

    CAS  PubMed  Google Scholar 

  32. Ye M, Zhang H, Huang X, Shi Y, Yao Q, Zhang L, Zhang J. Retrograde popliteal approach for challenging occlusions of the femoral-popliteal arteries. J Vasc Surg. 2013;58(1):84–9.

    PubMed  Google Scholar 

  33. Fanelli F, Lucatelli P, Allegritti M, Corona M, Rossi P, Passariello R. Retrograde popliteal access in the supine patient for recanalization of the superficial femoral artery: initial results. J Endovasc Ther. 2011;18(4):503–9.

    PubMed  Google Scholar 

  34. Sheth RA, Ganguli S. Closure of alternative vascular sites, including axillary, brachial, popliteal, and surgical grafts. Tech Vasc Interv Radiol. 2015;18(2):113–21.

    PubMed  Google Scholar 

  35. Ballı Ö, Çakır V, Coşkun M, Pekçevik R, Gür S. Implementation of the EXOSEAL vascular closure device in the transpopliteal arterial approach. J Vasc Interv Radiol. 2018;29(8):1180–6.

    PubMed  Google Scholar 

  36. Noory E, Rastan A, Sixt S, Schwarzwälder U, Leppännen O, Schwarz T, Bürgelin K, Hauk M, Branzan D, Hauswald K, Beschorner U, Nazary T, Brantner R, Neumann FJ, Zeller T. Arterial puncture closure using a clip device after transpopliteal retrograde approach for recanalization of the superficial femoral artery. J Endovasc Ther. 2008;15(3):310–4.

    PubMed  Google Scholar 

  37. Barbetta I, van den Berg JC. Access and hemostasis: femoral and popliteal approaches and closure devices-why, what, when, and how? Semin Intervent Radiol. 2014;31(4):353–60.

    PubMed  PubMed Central  Google Scholar 

  38. Pezold M, Blumberg S, Sadek M, Maldonado T, Cayne N, Jacobowitz G, James H, Berland T. Antegrade superficial femoral artery access for lower extremity arterial disease is safe and effective in the outpatient setting. Ann Vasc Surg. 2021;72:175–81.

    PubMed  Google Scholar 

  39. Kweon M, Bhamidipaty V, Holden A, Hill AA. Antegrade superficial femoral artery versus common femoral artery punctures for infrainguinal occlusive disease. J Vasc Interv Radiol. 2012;23(9):1160–4.

    PubMed  Google Scholar 

  40. Zenunaj G, Traina L, Acciarri P, Mucignat M, Scian S, Alesiani F, Serra R, Gasbarro V. Superficial femoral artery access for infrainguinal antegrade endovascular interventions in the hostile groin: a prospective randomized study. Ann Vasc Surg. 2022:S0890-5096(22)00200-X.

    Google Scholar 

  41. Gutzeit A, Schoch E, Sautter T, Jenelten R, Graf N, Binkert CA. Antegrade access to the superficial femoral artery with ultrasound guidance: feasibility and safety. J Vasc Interv Radiol. 2010;21(10):1495–500.

    PubMed  Google Scholar 

  42. Avraham E, Natour M, Obaid W, Karmeli R. Superficial femoral artery access for endovascular aortic repair. J Vasc Surg. 2020;71(5):1538–45.

    PubMed  Google Scholar 

  43. Schmidt A, Bausback Y, Piorkowski M, Werner M, Bräunlich S, Ulrich M, Varcoe R, Friedenberger J, Schuster J, Botsios S, Scheinert D. Retrograde recanalization technique for use after failed antegrade angioplasty in chronic femoral artery occlusions. J Endovasc Ther. 2012;19(1):23–9.

    PubMed  Google Scholar 

  44. Palena LM, Manzi M. Direct stent puncture technique for intraluminal stent recanalization in the superficial femoral and popliteal arteries in-stent occlusion: outcomes from a prospective clinical analysis of diabetics with critical limb ischemia. Cardiovasc Revasc Med. 2013;14(4):203–6.

    PubMed  Google Scholar 

  45. Aprigliano G, Giupponi L, Palloshi A, Glavina F, Morici N. Sheathless use of Supera stent minimizes access complications in antegrade femoral puncture: technical note with case series. J Vasc Access. 2021;16:11297298211050480.

    Google Scholar 

  46. Titano JJ, Biederman DM, Zech J, Korff R, Ranade M, Patel R, et al. Safety and outcomes of transradial access in patients with international normalized ratio 1.5 or above. J Vasc Interv Radiol. 2018;29(3):383–8.

    PubMed  Google Scholar 

  47. Posham R, Young LB, Lookstein RA, Pena C, Patel RS, Fischman AM. Radial access for lower extremity peripheral arterial interventions: do we have the tools? Semin Interv Radiol. 2018;35(5):427–34.

    Google Scholar 

  48. Sher A, Posham R, Vouyouka A, Patel R, Lookstein R, Faries PL, et al. Safety and feasibility of transradial infrainguinal peripheral arterial disease interventions. J Vasc Surg. 2020;72(4):1237–46.e1.

    PubMed  Google Scholar 

  49. Uhlemann M, Möbius-Winkler S, Mende M, Eitel I, Fuernau G, Sandri M, et al. The Leipzig prospective vascular ultrasound registry in radial artery catheterization: impact of sheath size on vascular complications. JACC Cardiovasc Interv. 2012;5(1):36–43.

    PubMed  Google Scholar 

  50. van Leeuwen MAH, Hollander MR, van der Heijden DJ, van de Ven PM, Opmeer KHM, Taverne Y, et al. The ACRA Anatomy Study (Assessment of Disability After Coronary Procedures Using Radial Access): a comprehensive anatomic and functional assessment of the vasculature of the hand and relation to outcome after transradial catheterization. Circ Cardiovasc Interv. 2017;10(11):e005753.

    PubMed  Google Scholar 

  51. Shoji S, Kohsaka S, Kumamaru H, Sawano M, Shiraishi Y, Ueda I, et al. Stroke after percutaneous coronary intervention in the era of transradial intervention. Circ Cardiovasc Interv. 2018;11(12):e006761.

    PubMed  Google Scholar 

  52. Patel VG, Brayton KM, Kumbhani DJ, Banerjee S, Brilakis ES. Meta-analysis of stroke after transradial versus transfemoral artery catheterization. Int J Cardiol. 2013;168(6):5234–8.

    PubMed  Google Scholar 

  53. Pancholy SB, Karuparthi PR, Gulati R. A novel nonpharmacologic technique to remove entrapped radial sheath. Catheter Cardiovasc Interv. 2015;85(1):E35–8.

    PubMed  Google Scholar 

  54. Ying L, Xu K, Gong X, Liu X, Fan Y, Zhao H, et al. Flow-mediated dilatation to relieve puncture-induced radial artery spasm: a pilot study. Cardiol J. 2018;25(1):1–6.

    PubMed  Google Scholar 

  55. Satti SR, Sivapatham T, Eden T. Radial artery neuro guide catheter entrapment during mechanical thrombectomy for acute ischemic stroke: Rescue brachial plexus block. Interv Neuroradiol. 2020;26(5):681–5.

    PubMed  PubMed Central  Google Scholar 

  56. Repanas T, Christopoulos G, Brilakis ES. Administration of ViperSlide™ for treating severe radial artery spasm: case report and systematic review of the literature. Cardiovasc Revasc Med. 2015;16(4):243–5.

    PubMed  Google Scholar 

  57. Fidone E, Price J, Gupta R. Use of ViperSlide lubricant to extract entrapped sheath after severe radial artery spasm during coronary angiography. Tex Heart Inst J. 2018;45(3):186–7.

    PubMed  PubMed Central  Google Scholar 

  58. Raje V, Christopher S, Hopkinson DA, Kania DA, Jovin IS. Administration of Rotaglide™ solution for treating refractory severe radial artery spasm: a case report. Cardiovasc Revasc Med. 2018;19(8s):56–7.

    PubMed  Google Scholar 

  59. Sciahbasi A, Cuono A, Marrangoni A, Rigattieri S. Papaverine use for radial artery sheath entrapment. Anatol J Cardiol. 2019;22(1):44–5.

    PubMed  PubMed Central  Google Scholar 

  60. Nazir S, Nesheiwat Z, Syed MA, Gupta R. Severe radial artery spasm causing entrapment of the Terumo radial to peripheral destination slender sheath: a case report. Eur Heart J Case Rep. 2020;4(2):1–4.

    PubMed  PubMed Central  Google Scholar 

  61. Dawson K, Jones TL, Kearney KE, McCabe JM. Emerging role of large-bore percutaneous axillary vascular access: a step-by-step guide. Interv Cardiol. 2020;15:e07.

    PubMed  PubMed Central  Google Scholar 

  62. Yufa A, Mikael A, Gautier G, Yoo J, Vo TD, Tayyarah M, et al. Percutaneous axillary artery access for peripheral and complex endovascular interventions: clinical outcomes and cost benefits. Ann Vasc Surg. 2022;83:176–83.

    PubMed  Google Scholar 

  63. Harris E, Warner CJ, Hnath JC, Sternbach Y, Darling RC 3rd. Percutaneous axillary artery access for endovascular interventions. J Vasc Surg. 2018;68(2):555–9.

    PubMed  Google Scholar 

  64. Rudnick MR, Leonberg-Yoo AK, Litt HI, Cohen RM, Hilton S, Reese PP. The controversy of contrast-induced nephropathy with intravenous contrast: what is the risk? Am J Kidney Dis. 2020;75(1):105–13. https://doi.org/10.1053/j.ajkd.2019.05.022.

    Article  PubMed  Google Scholar 

  65. Rundback JH, Nahl D, Yoo V. Contrast-induced nephropathy. J Vasc Surg. 2011;54:575–9.

    PubMed  Google Scholar 

  66. Gupta RK, Bang TJ. Prevention of contrast-induced nephropathy (CIN) in interventional radiology practice. Semin Interv Radiol. 2010;27(4):348–59. https://doi.org/10.1055/s-0030-1267860.

    Article  CAS  Google Scholar 

  67. Davenport MS, Cohan RH, Caoili EM, Ellis JH. Repeat contrast medium reactions in premedicated patients: frequency and severity. Radiology. 2009;253(2):372–9.

    PubMed  Google Scholar 

  68. Sharafuddin MJ, Marjan AE. Current status of carbon dioxide angiography. J Vasc Surg. 2017;66(2):618–37.

    PubMed  Google Scholar 

  69. Cho KJ. Carbon dioxide angiography: scientific principles and practice. Vasc Specialist Int. 2015;31(3):67–80. https://doi.org/10.5758/vsi.2015.31.3.67.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Caridi JG, Cho KJ, Fairia C, Eghbalieh N. Carbon dioxide digital subtraction angiography (CO2 DSA): a comprehensive user guide for all operators. Vasc Dis Manag. 2014;11:E221–56.

    Google Scholar 

  71. Kozlov DB, Lang EV, Barnhart W, Gossler A, De Girolami U. Adverse cerebrovascular effects of intraarterial CO2 injections: development of an in vitro/in vivo model for assessment of gas-based toxicity. J Vasc Interv Radiol. 2005;16:713–26.

    PubMed  Google Scholar 

  72. Thomas RP, Viniol S, König AM, Portig I, Swaid Z, Mahnken AH. Feasibility and safety of automated CO2 angiography in peripheral arterial interventions. Medicine. 2021;100(2):e24254. https://doi.org/10.1097/MD.0000000000024254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Palena LM, Diaz-Sandoval LJ, Candeo A, Brigato C, Sultato E, Manzi M. Automated carbon dioxide angiography for the evaluation and endovascular treatment of diabetic patients with critical limb ischemia. J Endovasc Ther. 2016;23:40–8.

    PubMed  Google Scholar 

  74. Kawarada O, Sakamoto S, Harada K, Ishihara M, Yasuda S, Ogawa H. Contemporary crossing techniques for infrapopliteal chronic total occlusions. J Endovasc Ther. 2014;21(2):266–80.

    PubMed  Google Scholar 

  75. DeMartini TJ. Retrograde dissection reentry for coronary chronic total occlusions. Interv Cardiol Clin. 2012;1(3):339–44.

    PubMed  Google Scholar 

  76. Joyal D, Thompson CA, Grantham JA, Buller CE, Rinfret S. The retrograde technique for recanalization of chronic total occlusions: a step-by-step approach. JACC Cardiovasc Interv. 2012;5(1):1–11.

    PubMed  Google Scholar 

  77. Tepe G, Beschorner U, Ruether C, et al. Drug-eluting balloon therapy for femoropopliteal occlusive disease: predictors of outcome with a special emphasis on calcium. J Endovasc Ther. 2015;22(5):727–33.

    PubMed  Google Scholar 

  78. Fanelli F, Cannavale A, Gazzetti M, et al. Calcium burden assessment and impact on drug-eluting balloons in peripheral arterial disease. Cardiovasc Intervent Radiol. 2014;37(4):898–907.

    CAS  PubMed  Google Scholar 

  79. Zeller T, Langhoff R, Rocha-Singh KJ, et al. Directional atherectomy followed by a paclitaxel-coated balloon to inhibit restenosis and maintain vessel patency: twelve-month results of the DEFINITIVE AR study. Circ Cardiovasc Interv. 2017;10(9):e004848.

    PubMed  PubMed Central  Google Scholar 

  80. Kokkinidis DG, Jawaid O, Cantu D, et al. Two-year outcomes of orbital atherectomy combined with drug-coated balloon angioplasty for treatment of heavily calcified femoropopliteal lesions. J Endovasc Ther. 2020;27(3):492–501.

    PubMed  Google Scholar 

  81. Foley TR, Cotter RP, Kokkinidis DG, Nguyen DD, Waldo SW, Armstrong EJ. Mid-term outcomes of orbital atherectomy combined with drug-coated balloon angioplasty for treatment of femoropopliteal disease. Catheter Cardiovasc Interv. 2017;89(6):1078–85.

    PubMed  Google Scholar 

  82. Tepe G, Brodmann M, Werner M, et al. Intravascular lithotripsy for peripheral artery calcification: 30-day outcomes from the randomized disrupt PAD III trial. JACC Cardiovasc Interv. 2021;14(12):1352–61.

    PubMed  Google Scholar 

  83. Brodmann M, Werner M, Holden A, et al. Primary outcomes and mechanism of action of intravascular lithotripsy in calcified, femoropopliteal lesions: Results of Disrupt PAD II. Catheter Cardiovasc Interv. 2019;93(2):335–42.

    PubMed  Google Scholar 

  84. Ichihashi S, Shibata T, Fujimura N, Nagatomi S, Yamamoto H, Kyuragi R, Adachi A, Iwakoshi S, Bolstad F, Saeki K, Obayashi K, Kichikawa K. Vessel calcification as a risk factor for in-stent restenosis in complex femoropopliteal lesions after Zilver PTX paclitaxel-coated stent placement. J Endovasc Ther. 2019;26(5):613–20.

    PubMed  Google Scholar 

  85. Tepe G, Brodmann M, Bachinsky W, Holden A, Zeller T, Mangalmurti S, Nolte-Ernsting C, Virmani R, Parikh S, Gray W, For the Dirupt PAD III Investigators. Intravascular lithotripsy for peripheral artery calcification: mid-term outcomes from the randomized disrupt PAD III trial. JSCAI. Original Research. 2022;1(4):100341.

    Google Scholar 

  86. Disrupt BTK II. CTG Labs - NCBI https://beta.clinicaltrials.gov/study/NCT05007925

  87. Schillinger M, Minar E. Percutaneous treatment of peripheral artery disease: novel techniques. Circulation. 2012;126(20):2433–40. https://doi.org/10.1161/CIRCULATIONAHA.111.036574.

    Article  PubMed  Google Scholar 

  88. Neville RF, Sidawy AN. Myointimal hyperplasia: basic science and clinical considerations. Semin Vasc Surg. 1998;11(3):142–8.

    CAS  PubMed  Google Scholar 

  89. Dias-Neto M, Matschuck M, Bausback Y, Banning-Eichenseher U, Steiner S, Branzan D, Staab H, Varcoe RL, Scheinert D, Schmidt A. Endovascular treatment of severely calcified femoropopliteal lesions using the “Pave-and-Crack” technique: technical description and 12-month results. J Endovasc Ther. 2018;25(3):334–42. https://doi.org/10.1177/1526602818763352. Epub 2018 Mar 20

    Article  PubMed  Google Scholar 

  90. Stanek F. Laser angioplasty of peripheral arteries: basic principles, current clinical studies, and future directions. Diagn Interv Radiol. 2019;25(5):392–7. https://doi.org/10.5152/dir.2019.18515.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Dippel EJ, Makam P, Kovach R, George JC, Patlola R, Metzger DC, Mena-Hurtado C, Beasley R, Soukas P, Colon-Hernandez PJ, Stark MA, Walker C, EXCITE ISR Investigators. Randomized controlled study of excimer laser atherectomy for treatment of femoropopliteal in-stent restenosis: initial results from the EXCITE ISR trial (EXCImer Laser Randomized Controlled Study for Treatment of FemoropopliTEal In-Stent Restenosis). JACC Cardiovasc Interv. 2015;8(1 Pt A):92–101. https://doi.org/10.1016/j.jcin.2014.09.009. Epub 2014 Dec 10

    Article  PubMed  Google Scholar 

  92. Herzog A, Bogdan S, Glikson M, Ishaaya AA, Love C. Selective tissue ablation using laser radiation at 355 nm in lead extraction by a hybrid catheter; a preliminary report. Lasers Surg Med. 2016;48(3):281–7. https://doi.org/10.1002/lsm.22451. Epub 2015 Dec 22

    Article  PubMed  Google Scholar 

  93. Stavroulakis K, Argyriou A, Watts M, Varghese JJ, Estes BA, Torsello G, Bisdas T, Huasen B. How to deal with calcium in the superficial femoral artery. J Cardiovasc Surg (Torino). 2019;60(5):572–81. https://doi.org/10.23736/S0021-9509.19.11038-5. Epub 2019 Jun 21

    Article  PubMed  Google Scholar 

  94. Adams G, Subramanian V. Optimizing laser atherectomy for different lesion morphologies. J Crit Limb Ischem. 2021;1(1):E27–33.

    Google Scholar 

  95. Mustapha JA, Diaz-Sandoval LJ, Saab F. Tibioperoneal CTOs in patients with critical limb ischemia. Endovasc Today May 2014.

    Google Scholar 

  96. Banerjee S, Shishehbor MH, Mustapha JA, Armstrong EJ, Ansari M, Rundback JH, Fisher B, Peña CS, Brilakis ES, Lee AC, Parikh S. A Percutaneous crossing algorithm for femoropopliteal and tibial artery chronic total occlusions (PCTO Algorithm). J Invasive Cardiol. 2019;31:111–9.

    PubMed  Google Scholar 

  97. Thomas R, Sarode K, Mohammad A, Sethi S, Baig MS, Gigliotti OS, Ali MI, Klein A, Abu-Fadel MS, Shammas NW, Prasad A, Brilakis ES. Crossing of infrainguinal peripheral arterial chronic total occlusion with a blunt microdissection catheter. J Invasive Cardiol. 2014;26:363–9.

    PubMed  Google Scholar 

  98. Bosiers M, Diaz-Cartelle J, Scheinert D, Peeters P, Dawkins KD. Revascularization of lower extremity chronic total occlusions with a novel intraluminal recanalization device: results of the ReOpen study. J Endovasc Ther. 2014;21:61–70.

    PubMed  Google Scholar 

  99. Laird JR, Mathews SJ, Brodmann M, Soukas PA, Schmidt A, Wing-It Trial Investigators. Performance of the Wingman catheter in peripheral artery chronic total occlusions: short-term results from the international Wing-It trial. Catheter Cardiovasc Interv. 2021;97:310–6.

    PubMed  Google Scholar 

  100. Laird J, Joye J, Sachdev N, Huang P, Caputo R, Mohiuddin I, Runyon J, Das T. Recanalization of infrainguinal chronic total occlusions with the crosser system: results of the PATRIOT trial. J Invasive Cardiol. 2014;26:497–504.

    PubMed  Google Scholar 

  101. Gur I, Lee W, Akopian G, Rowe VL, Weaver FA, Katz SG. Clinical outcomes and implications of failed infrainguinal endovascular stents. J Vasc Surg. 2011;53:658–66. discussion 667

    PubMed  Google Scholar 

  102. Dippel E, Makam P, Kovach R, et al. Randomized control study of Excimer Laser atherectomy for treatment of femoropopliteal In-Stent restenosis. J Am C CardiolInt. 2015;8:92–101.

    Google Scholar 

  103. Ho K, Owens C. Diagnosis, classification and treatment of femoropopliteal artery in-stent restenosis. J Vasc Surg. 2017;65:545–54.

    PubMed  Google Scholar 

  104. Tosaka A, et al. Classification and clinical impact of restenosis after femoropopliteal stenting. J Am Coll Cardiol. 2012;59:16–23.

    PubMed  Google Scholar 

  105. Sabeti D, Mlekusch S, et al. Conventional balloon angioplasty versus peripheral cutting balloon angioplasty for treatment of femoropopliteal artery in-stent restenosis: initial experience. Radiology. 2008;248:297–302.

    PubMed  Google Scholar 

  106. Krakenberg H, Tubler T, et al. Drug Coated balloon versus standard balloon for superficial femoral artery in-stent restenosis. The randomized Femoral Artery In-Stent restenosis (FAIR) trial. Circulation. 2015;132:2230–6.

    Google Scholar 

  107. Virga V, Stabile E, et al. Drug-Eluting balloons for treatment the superficial femoral artery In-stent restenosis. J Am Coll Cardiol. 2014;7:411–5.

    Google Scholar 

  108. Boisers M, Deloose K, et al. Superiority of stent-grafts for in-stent restenosis in the superficial femoral artery: twelve month results from a multicenter randomized trial. J Endovasc Ther. 2015;22(1):1–10.

    Google Scholar 

  109. Zeller T, Dake M, et al. Treatment of femoropopliteal in-stent restenosis with paclitaxel-eluting stents. J Am Coll Cardiol Int. 2013;6:274–81.

    Google Scholar 

  110. Blaisdell FW. Development of femoro-femoral and axillo-femoral bypass procedures. J Vasc Surg. 2011;53(2):540–4.

    PubMed  Google Scholar 

  111. Mishall PL, Matakas JD, English K, Allyn K, Algava D, Howe RA, Downie SA. Axillobifemoral bypass: a brief surgical and historical review. Einstein J Biol Med. 2016;31(1–2):6–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Samson RH, Showalter DP, Lepore MR Jr, Nair DG, Dorsay DA, Morales RE. Improved patency after axillofemoral bypass for aortoiliac occlusive disease. J Vasc Surg. 2018;68(5):1430–7.

    PubMed  Google Scholar 

  113. Tadros RO, Vouyouka AG, Ting W, et al. A review of superficial femoral artery angioplasty and stenting. J Vasc Med Surg. 2015;3:183.

    Google Scholar 

  114. Goodney PP, Beck AW, Nagle J, et al. National trends in lower extremity bypass surgery, endovascular interventions, and major amputations. J Vasc Surg. 2009;50(1):54–60.

    PubMed  Google Scholar 

  115. van de Weijer MA, Kruse RR, Schamp K, et al. Morbidity of femoropopliteal bypass surgery. Semin Vasc Surg. 2015;28(2):112–21.

    PubMed  Google Scholar 

  116. Krievins DK, Halena G, Scheinert D, Savlovskis J, Szopiński P, Krämer A, Ouriel K, Nair K, Holden A, Schmidt A. One-year results from the DETOUR I trial of the PQ Bypass DETOUR System for percutaneous femoropopliteal bypass. J Vasc Surg. 2020;72(5):1648–1658.e2.

    PubMed  Google Scholar 

  117. Halena G, Krievins DK, Scheinert D, Savlovskis J, Szopiński P, Krämer A, Ouriel K, Schmidt A, Zdunek M, Lyden SP. Percutaneous femoropopliteal bypass: 2-year results of the DETOUR system. J Endovasc Ther. 2022;29(1):84–95.

    PubMed  Google Scholar 

  118. Usman HU, Varghese V, Janzer S, George JC. Histopathologic characterization of chronic total occlusions by directional atherectomy: the HIPACT study. J Invasive Cardiol. 2021;33(6):E443–50.

    PubMed  Google Scholar 

  119. Zhang F, Zhang H, Luo X, Liang G, Feng Y, Zhang WW. Catheter-directed thrombolysis-assisted angioplasty for chronic lower limb ischemia. Ann Vasc Surg. 2014;28(3):590–5.

    PubMed  Google Scholar 

  120. Scheer F, Lüdtke CW, Kamusella P, Wiggermann P, Vieweg H, Schlöricke E, Lichtenberg M, Andresen R, Wissgott C. Combination of rotational atherothrombectomy and Paclitaxel-coated angioplasty for femoropopliteal occlusion. Clin Med Insights Cardiol. 2015;8(Suppl 2):43–8.

    PubMed  PubMed Central  Google Scholar 

  121. Shammas NW. JETSTREAM atherectomy: a review of technique, tips, and tricks in treating the femoropopliteal lesions. Int J Angiol. 2015;24(2):81–6.

    PubMed  Google Scholar 

  122. Teymen B, Aktürk S. Chronic femoropopliteal occlusions: comparison of drug-eluting balloon angioplasty with or without prior rotational thrombectomy. Acta Cardiol Sin. 2020;36(2):118–24.

    PubMed  PubMed Central  Google Scholar 

  123. Shammas NW, Weissman NJ, Coiner D, Shammas GA, Dippel E, Jerin M. Treatment of subacute and chronic thrombotic occlusions of lower extremity peripheral arteries with the excimer laser: a feasibility study. Cardiovasc Revasc Med. 2012;13(4):211–4.

    PubMed  Google Scholar 

  124. Warkentin TE. Heparin-induced thrombocytopenia: a ten-year retrospective. Annu Rev Med. 1999;50(1):129–47.

    CAS  PubMed  Google Scholar 

  125. Smythe MA, Koerber JM, Mattson JC. The incidence of recognized heparin-induced thrombocytopenia in a large, tertiary care teaching hospital. Chest [Internet]. 2007;131(6):1644–9. https://doi.org/10.1378/chest.06-2109.

    Article  PubMed  Google Scholar 

  126. Nand S, Wong W, Yuen B, Yetter A, Schmulbach E, Fisher SG. Heparin-induced thrombocytopenia with thrombosis: Incidence, analysis of risk factors, and clinical outcomes in 108 consecutive patients treated at a single institution. Am J Hematol. 1997;56(1):12–6.

    CAS  PubMed  Google Scholar 

  127. Cuker A, Arepally GM, Chong BH, Cines DB, Greinacher A, Gruel Y, et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: heparin-induced thrombocytopenia. Blood Adv. 2018;2(22):3360–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Ouriel K. A history of thrombolytic therapy. J Endovasc Ther. 2004;11(SUPPL. 2):128–33.

    Google Scholar 

  129. Morrison HL. Catheter-directed thrombolysis for acute limb ischemia. Semin Interv Radiol. 2006;23(3):258–69.

    Google Scholar 

  130. Ouriel K, Veith FJ, Sasahara AA, Whittemore AD, Roon AJ, Braithwaite BD, et al. Thrombolysis or peripheral arterial surgery: Phase I results. J Vasc Surg. 1996;23(1):64–75.

    CAS  PubMed  Google Scholar 

  131. Ouriel K, Shortell CK, DeWeese JA, Green RM, Francis CW, Azodo MVU, et al. A comparison of thrombolytic therapy with operative revascularization in the initial treatment of acute peripheral arterial ischemia. J Vasc Surg. 1994;19(6):1021–30.

    CAS  PubMed  Google Scholar 

  132. Kaufman C, Kinney T, Quencer K. Practice trends of fibrinogen monitoring in thrombolysis. J Clin Med. 2018;7(5):111.

    PubMed  PubMed Central  Google Scholar 

  133. Shammas NW, Torey JT, Shammas WJ, Jones-Miller S, Shammas GA. Intravascular ultrasound assessment and correlation with angiographic findings demonstrating femoropopliteal arterial dissections post atherectomy: results from the idissection study. J Invasive Cardiol. 2018;30(7):240–4.

    PubMed  Google Scholar 

  134. Spiliopoulos S, Karamitros A, Reppas L, Brountzos E. Novel balloon technologies to minimize dissection of peripheral angioplasty. Expert Rev Med Devices. 2019;16(7):581–8.

    CAS  PubMed  Google Scholar 

  135. Poncyljusz W, Falkowski A, Safranow K, Rać M, Zawierucha D. Cutting-balloon angioplasty versus balloon angioplasty as treatment for short atherosclerotic lesions in the superficial femoral artery: randomized controlled trial. Cardiovasc Intervent Radiol. 2013;36(6):1500–7. https://doi.org/10.1007/s00270-013-0603-5. Epub 2013 Apr 11

    Article  PubMed  Google Scholar 

  136. AngioSculpt Test Plan ST-1197 (2008), on file at AngioScore, Inc.

    Google Scholar 

  137. Scheinert D, Peeters P, Bosiers M, O'Sullivan G, Sultan S, Gershony G. Results of the multicenter first-in-man study of a novel scoring balloon catheter for the treatment of infra-popliteal peripheral arterial disease. Catheter Cardiovasc Interv. 2007;70(7):1034–9.

    PubMed  Google Scholar 

  138. Bosiers M, Deloose K, Cagiannos C, Verbist J, Peeters P. Use of the AngioSculpt scoring balloon for infrapopliteal lesions in patients with critical limb ischemia: 1-year outcome. Vascular. 2009;17(1):29–35.

    PubMed  Google Scholar 

  139. Sirignano P, Mansour W, d’Adamo A, Cuozzo S, Capoccia L, Speziale F. Early experience with a new concept of angioplasty nitinol-constrained balloon catheter (Chocolate®) in severely claudicant patients. Cardiovasc Intervent Radiol. 2018;41(3):377–84.

    PubMed  Google Scholar 

  140. Bouras G, Lansky A, McClure J, et al. TCT-778 outcomes from the chocolate BAR: a large, multi-center, prospective, post-market study on use of the chocolate percutaneous transluminal angioplasty (PTA) balloon. J Am Coll Cardiol. 2016;68(18_Supplement):B314. https://doi.org/10.1016/j.jacc.2016.09.809.

    Article  Google Scholar 

  141. Holden A. The use of intravascular lithotripsy for the treatment of severely calcified lower limb arterial CTOs. J Cardiovasc Surg. 2019;60(1):3–7.

    Google Scholar 

  142. Holden A, Hill A, Walker A, Buckley B, Merrilees S, Nowakowski P, Krzanowski M, Brodmann M. PRELUDE prospective study of the serranator device in the treatment of atherosclerotic lesions in the superficial femoral and popliteal arteries. J Endovasc Ther. 2019;26(1):18–25.

    PubMed  Google Scholar 

  143. Holden A, Lichtenberg M, Nowakowski P, Wissgott C, Hertting K, Brodmann M. Prospective study of serration angioplasty in the infrapopliteal arteries using the serranator device: PRELUDE BTK study. J Endovasc Ther. 2021;20:15266028211059917.

    Google Scholar 

  144. Rocha-Singh KJ, Jaff M, Joye J, et al. Major adverse limb events and wound healing following infrapopliteal artery stent implantation in patients with critical limb ischemia: the XCELL trial. Catheter Cardiovasc Interv. 2012;80(6):1042–51.

    PubMed  Google Scholar 

  145. Scheinert D, Katsanos K, Zeller T, et al. A prospective randomized multicenter comparison of balloon angioplasty and infrapopliteal stenting with the sirolimus-eluting stent in patients with ischemic peripheral arterial disease: 1-year results from the ACHILLES trial. J Am Coll Cardiol. 2012;60(22):2290–5.

    PubMed  Google Scholar 

  146. Rastan A, Brechtel K, Krankenberg H, et al. Sirolimus-eluting stents for treatment of infrapopliteal arteries reduce clinical event rate compared to bare-metal stents: long-term results from a randomized trial. J Am Coll Cardiol. 2012;60:587–91.

    CAS  PubMed  Google Scholar 

  147. Kok HK, Prabhudesai SG, Ahmed I, Karunanithy N, Abisi S, Katsanos K, Diamantopoulos A. Techniques for infrapopliteal arterial bifurcation stenting. Ann Vasc Surg. 2018;50:288–96.

    PubMed  Google Scholar 

  148. Bosiers M, Scheinert D, Peeters P, et al. Randomized comparison of everolimus-eluting versus bare-metal stents in patients with critical limb ischemia and infrapopliteal arterial occlusive disease. J Vasc Surg. 2012;55:390–8.

    PubMed  Google Scholar 

  149. Siablis D, Kitrou PM, Spiliopoulos S, et al. Paclitaxel-coated balloon angioplasty versus drug-eluting stenting for the treatment of infrapopliteal long-segment arterial occlusive disease: the IDEAS randomized controlled trial. JACC Cardiovasc Interv. 2014;7:1048–56.

    PubMed  Google Scholar 

  150. Sawaya FJ, Lefèvre T, Chevalier B, Garot P, Hovasse T, Morice M-C, Rab T, Louvard Y. Contemporary approach to coronary bifurcation lesion treatment. J Am Coll Cardiol Intv. 2016;9(18):1861–78. https://doi.org/10.1016/j.jcin.2016.06.056.

    Article  Google Scholar 

  151. Biondi-Zoccai GG, Sangiorgi G, Lotrionte M, et al. Infragenicular stent implantation for below-the-knee atherosclerotic disease: clinical evidence from an international collaborative meta-analysis on 640 patients. J Endovasc Ther. 2009;16:251–60.

    PubMed  Google Scholar 

  152. Huizing E, Kum S, Ipema J, et al. Mid-term outcomes of an everolimus-eluting bioresorbable vascular scaffold in patients with below-the-knee arterial disease: a pooled analysis of individual patient data. Vasc Med. 2021;26:195–9.

    CAS  PubMed  Google Scholar 

  153. Ochoa Chaar CI, Shebl F, Sumpio B, Dardik A, Indes J, Sarac T. Distal embolization during lower extremity endovascular interventions. J Vasc Surg. 2017;66(1):143–50.

    PubMed  Google Scholar 

  154. Shammas NW, Shammas GA, Dippel EJ, Jerin M, Shammas WJ. Predictors of distal embolization in peripheral percutaneous interventions: a report from a large peripheral vascular registry. J Invasive Cardiol. 2009;21(12):628–31.

    PubMed  Google Scholar 

  155. Shrikhande GV, Khan SZ, Hussain HG, Dayal R, McKinsey JF, Morrissey N. Lesion types and device characteristics that predict distal embolization during percutaneous lower extremity interventions. J Vasc Surg. 2011;53(2):347–52.

    PubMed  Google Scholar 

  156. Fukagawa T, Hirano K, Mori S, Yamawaki M, Kobayashi N, Tsutsumi M, Honda Y, Makino K, Ito Y. Efficacy of the novel technique HIRANODOME in preventing distal embolization during endovascular treatment of femoropopliteal lesions. Catheter Cardiovasc Interv. 2021;97(5):E697–703.

    PubMed  Google Scholar 

  157. Jalal S, Mustapha JA, Rosman HS, Mehta RH, Davis TP. Distal cuff occlusion: a novel, simple approach for distal embolic protection in peripheral vascular intervention. J Invasive Cardiol. 2017;29(9):297–300.

    PubMed  Google Scholar 

  158. Krishnan P, Tarricone A, Purushothaman KR, Purushothaman M, Vasquez M, Kovacic J, Baber U, Kapur V, Gujja K, Kini A, Sharma S. An algorithm for the use of embolic protection during atherectomy for femoral popliteal lesions. JACC Cardiovasc Interv. 2017;10(4):403–10.

    PubMed  Google Scholar 

  159. Czihal M, Findik Z, Bernau C, Seidensticker M, Ricke J, Hoffmann U, Treitl M, Treitl KM. Embolic protection in complex femoropopliteal interventions: safety, efficacy and predictors of filter macroembolization. Cardiovasc Intervent Radiol. 2021;44(5):700–8.

    PubMed  Google Scholar 

  160. Boc A, Blinc A, Boc V. Distal embolization during percutaneous revascularization of the lower extremity arteries. Vasa. 2020;49(5):389–94.

    PubMed  Google Scholar 

  161. Cannavale A, Santoni M, Gazzetti M, Catalano C, Fanelli F. Current status of distal embolization in femoropopliteal endovascular interventions. Vasc Endovasc Surg. 2018;52:440–7.

    Google Scholar 

  162. Farhat-Sabet AA, Tolaymat B, Voit A, Drucker CB, Santini-Dominguez R, Ucuzian AA, Toursavadkohi SA, Nagarsheth KH. Successful treatment of acute limb ischemia secondary to iatrogenic distal embolization using catheter directed aspiration thrombectomy. Front Surg. 2020;7:22.

    PubMed  PubMed Central  Google Scholar 

  163. Applebaum RM, Kronzon I. Evaluation and management of cholesterol embolization and the blue toe syndrome. Curr Opin Cardiol. 1996;11(5):533–42.

    CAS  PubMed  Google Scholar 

  164. O’Keeffe ST, Woods BO, Breslin DJ, Tsapatsaris NP. Blue toe syndrome. Causes and management. Arch Intern Med. 1992;152(11):2197–202.

    PubMed  Google Scholar 

  165. Karmody AM, Powers SR, Monaco VJ, Leather RP. "Blue toe" syndrome. An indication for limb salvage surgery. Arch Surg. 1976;111(11):1263–8.

    CAS  PubMed  Google Scholar 

  166. Flory CM. Arterial occlusions produced by emboli from eroded aortic atheromatous plaques. Am J Pathol. 1945;21(3):549–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Hoye SJ, Teitelbaum S, Gore I, Warren R. Atheromatous embolization; a factor in peripheral gangrene. N Engl J Med. 1959;261(3):128–31.

    CAS  PubMed  Google Scholar 

  168. Matchett WJ, McFarland DR, Eidt JF, Moursi MM. Blue toe syndrome: treatment with intra-arterial stents and review of therapies. J Vasc Interv Radiol. 2000;11(5):585–92.

    CAS  PubMed  Google Scholar 

  169. Khafif RA, DeLima C, Silverberg A, Frankel R. Calciphylaxis and systemic calcinosis. Collective review. Arch Intern Med. 1990;150(5):956–9.

    CAS  PubMed  Google Scholar 

  170. Ridker PM, Michel T. Streptokinase therapy and cholesterol embolization. Am J Med. 1989;87(3):357–8.

    CAS  PubMed  Google Scholar 

  171. Feder W, Auerbach R. “Purple toes”: an uncommon sequela of oral coumarin drug therapy. Ann Intern Med. 1961;55:911–7.

    CAS  PubMed  Google Scholar 

  172. Conn DL, Tompkins RB, Nichols WL. Glucocorticoids in the management of vasculitis--a double edged sword? J Rheumatol. 1988;15(8):1181–3.

    CAS  PubMed  Google Scholar 

  173. Al Aboud A, Abrams M, Mancini AJ. Blue toes after stimulant therapy for pediatric attention deficit hyperactivity disorder. J Am Acad Dermatol. 2011;64(6):1218–9.

    PubMed  Google Scholar 

  174. Borovoy M, Beresh AS. Transient vasospasm. The blue toe. J Am Podiatr Med Assoc. 1985;75(12):656–7.

    CAS  PubMed  Google Scholar 

  175. Foley WD, Stonely T. CT angiography of the lower extremities. Radiol Clin N Am. 2010;48(2):367–96. ix

    PubMed  Google Scholar 

  176. Ma T, Zhou B, Hsiai TK, Shung KK. A review of intravascular ultrasound-based multimodal intravascular imaging: the synergistic approach to characterizing vulnerable plaques. Ultrason Imaging. 2016;38(5):314–31.

    PubMed  Google Scholar 

  177. Brewer ML, Kinnison ML, Perler BA, White RI Jr. Blue toe syndrome: treatment with anticoagulants and delayed percutaneous transluminal angioplasty. Radiology. 1988;166(1 Pt 1):31–6.

    CAS  PubMed  Google Scholar 

  178. Renshaw A, McCowen T, Waltke EA, Wattenhofer SP, Tahara RW, Baxter BT. Angioplasty with stenting is effective in treating blue toe syndrome. Vasc Endovasc Surg. 2002;36(2):155–9.

    CAS  Google Scholar 

  179. Dolmatch BL, Rholl KS, Moskowitz LB, Dake MD, van Breda A, Kaplan JO, et al. Blue toe syndrome: treatment with percutaneous atherectomy. Radiology. 1989;173(3):799–804.

    CAS  PubMed  Google Scholar 

  180. Clugston RA, Eisenhauer AC, Matthews RV. Atherectomy of the distal aorta using a “kissing-balloon” technique for the treatment of blue toe syndrome. AJR Am J Roentgenol. 1992;159(1):125–7.

    CAS  PubMed  Google Scholar 

  181. Kumpe DA, Zwerdlinger S, Griffin DJ. Blue digit syndrome: treatment with percutaneous transluminal angioplasty. Radiology. 1988;166(1 Pt 1):37–44.

    CAS  PubMed  Google Scholar 

  182. Johnston KW. Femoral and popliteal arteries: reanalysis of results of balloon angioplasty. Radiology. 1992;183(3):767–71.

    CAS  PubMed  Google Scholar 

  183. Ng VG, Mena C, Pietras C, Lansky AJ. Local delivery of paclitaxel in the treatment of peripheral arterial disease. Eur J Clin Investig. 2015;45(3):333–45.

    CAS  Google Scholar 

  184. Feldman DN, Armstrong EJ, Aronow HD, Gigliotti OS, Jaff MR, Klein AJ, et al. SCAI consensus guidelines for device selection in femoral-popliteal arterial interventions. Catheter Cardiovasc Interv. 2018;92(1):124–40.

    PubMed  Google Scholar 

  185. Bailey SR, Beckman JA, Dao TD, Misra S, Sobieszczyk PS, White CJ, et al. ACC/AHA/SCAI/SIR/SVM 2018 Appropriate Use Criteria for Peripheral Artery Intervention: A Report of the American College of Cardiology Appropriate Use Criteria Task Force, American Heart Association, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, and Society for Vascular Medicine. J Am Coll Cardiol. 2019;73(2):214–37.

    PubMed  Google Scholar 

  186. Gray WA, Granada JF. Drug-coated balloons for the prevention of vascular restenosis. Circulation. 2010;121(24):2672–80.

    PubMed  Google Scholar 

  187. Tepe G, Zeller T, Albrecht T, Heller S, Schwarzwalder U, Beregi JP, et al. Local delivery of paclitaxel to inhibit restenosis during angioplasty of the leg. N Engl J Med. 2008;358(7):689–99.

    CAS  PubMed  Google Scholar 

  188. Rosenfield K, Jaff MR, White CJ, Rocha-Singh K, Mena-Hurtado C, Metzger DC, et al. Trial of a paclitaxel-coated balloon for femoropopliteal artery disease. N Engl J Med. 2015;373(2):145–53.

    CAS  PubMed  Google Scholar 

  189. Werk M, Albrecht T, Meyer DR, Ahmed MN, Behne A, Dietz U, et al. Paclitaxel-coated balloons reduce restenosis after femoro-popliteal angioplasty: evidence from the randomized PACIFIER trial. Circ Cardiovasc Interv. 2012;5(6):831–40.

    CAS  PubMed  Google Scholar 

  190. Fanelli F, Cannavale A, Boatta E, Corona M, Lucatelli P, Wlderk A, et al. Lower limb multilevel treatment with drug-eluting balloons: 6-month results from the DEBELLUM randomized trial. J Endovasc Ther. 2012;19(5):571–80.

    PubMed  Google Scholar 

  191. Brodmann M, Werner M, Meyer DR, Reimer P, Kruger K, Granada JF, et al. Sustainable antirestenosis effect with a low-dose drug-coated balloon: the ILLUMENATE European randomized clinical trial 2-year results. JACC Cardiovasc Interv. 2018;11(23):2357–64.

    PubMed  Google Scholar 

  192. Tepe G, Schnorr B, Albrecht T, Brechtel K, Claussen CD, Scheller B, et al. Angioplasty of femoral-popliteal arteries with drug-coated balloons: 5-year follow-up of the THUNDER trial. JACC Cardiovasc Interv. 2015;8(1 Pt A):102–8.

    PubMed  Google Scholar 

  193. Schneider PA, Laird JR, Doros G, Gao Q, Ansel G, Brodmann M, et al. Mortality not correlated with paclitaxel exposure: an independent patient-level meta-analysis of a drug-coated balloon. J Am Coll Cardiol. 2019;73(20):2550–63.

    PubMed  Google Scholar 

  194. Schmidt A, Piorkowski M, Gorner H, Steiner S, Bausback Y, Scheinert S, et al. Drug-coated balloons for complex femoropopliteal lesions: 2-year results of a real-world registry. JACC Cardiovasc Interv. 2016;9(7):715–24.

    PubMed  Google Scholar 

  195. Ott I, Cassese S, Groha P, Steppich B, Voll F, Hadamitzky M, et al. ISAR-PEBIS (paclitaxel-eluting balloon versus conventional balloon angioplasty for in-stent restenosis of superficial femoral artery): a randomized trial. J Am Heart Assoc. 2017;6(7):e006321.

    PubMed  PubMed Central  Google Scholar 

  196. Dake MD, Ansel GM, Jaff MR, Ohki T, Saxon RR, Smouse HB, et al. Sustained safety and effectiveness of paclitaxel-eluting stents for femoropopliteal lesions: 2-year follow-up from the Zilver PTX randomized and single-arm clinical studies. J Am Coll Cardiol. 2013;61(24):2417–27.

    CAS  PubMed  Google Scholar 

  197. Gray WA, Keirse K, Soga Y, Benko A, Babaev A, Yokoi Y, et al. A polymer-coated, paclitaxel-eluting stent (Eluvia) versus a polymer-free, paclitaxel-coated stent (Zilver PTX) for endovascular femoropopliteal intervention (IMPERIAL): a randomised, non-inferiority trial. Lancet. 2018;392(10157):1541–51.

    CAS  PubMed  Google Scholar 

  198. Cipollari S, Yokoi H, Ohki T, Kichikawa K, Nakamura M, Komori K, et al. Long-term effectiveness of the zilver PTX drug-eluting stent for femoropopliteal peripheral artery disease in patients with no patent tibial runoff vessels-results from the Zilver PTX Japan post-market surveillance study. J Vasc Interv Radiol. 2018;29(1):9–17. e1

    PubMed  Google Scholar 

  199. Zeller T, Rastan A, Macharzina R, Tepe G, Kaspar M, Chavarria J, et al. Drug-coated balloons vs. drug-eluting stents for treatment of long femoropopliteal lesions. J Endovasc Ther. 2014;21(3):359–68.

    PubMed  Google Scholar 

  200. Bausback Y, Wittig T, Schmidt A, Zeller T, Bosiers M, Peeters P, et al. Drug-eluting stent versus drug-coated balloon revascularization in patients with femoropopliteal arterial disease. J Am Coll Cardiol. 2019;73(6):667–79.

    CAS  PubMed  Google Scholar 

  201. Katsanos K, Spiliopoulos S, Kitrou P, Krokidis M, Paraskevopoulos I, Karnabatidis D. Risk of death and amputation with use of paclitaxel-coated balloons in the infrapopliteal arteries for treatment of critical limb ischemia: a systematic review and meta-analysis of randomized controlled trials. J Vasc Interv Radiol. 2020;31(2):202–12.

    PubMed  Google Scholar 

  202. Horwitz SB. Mechanism of action of taxol. Trends Pharmacol Sci. 1992;13(4):134–6.

    CAS  PubMed  Google Scholar 

  203. Gongora CA, Shibuya M, Wessler JD, McGregor J, Tellez A, Cheng Y, et al. Impact of paclitaxel dose on tissue pharmacokinetics and vascular healing: a comparative drug-coated balloon study in the familial hypercholesterolemic swine model of superficial femoral in-stent restenosis. JACC Cardiovasc Interv. 2015;8(8):1115–23.

    PubMed  Google Scholar 

  204. Axel DI, Kunert W, Goggelmann C, Oberhoff M, Herdeg C, Kuttner A, et al. Paclitaxel inhibits arterial smooth muscle cell proliferation and migration in vitro and in vivo using local drug delivery. Circulation. 1997;96(2):636–45.

    CAS  PubMed  Google Scholar 

  205. Freyhardt P, Zeller T, Kroncke TJ, Schwarzwaelder U, Schreiter NF, Stiepani H, et al. Plasma levels following application of paclitaxel-coated balloon catheters in patients with stenotic or occluded femoropopliteal arteries. Rofo. 2011;183(5):448–55.

    CAS  PubMed  Google Scholar 

  206. Rowinsky EK, Donehower RC. Paclitaxel (taxol). N Engl J Med. 1995;332(15):1004–14.

    CAS  PubMed  Google Scholar 

  207. Margolis J, McDonald J, Heuser R, Klinke P, Waksman R, Virmani R, et al. Systemic nanoparticle paclitaxel (nab-paclitaxel) for in-stent restenosis I (SNAPIST-I): a first-in-human safety and dose-finding study. Clin Cardiol. 2007;30(4):165–70.

    PubMed  PubMed Central  Google Scholar 

  208. Rocha-Singh KJ, Duval S, Jaff MR, Schneider PA, Ansel GM, Lyden SP, et al. Mortality and paclitaxel-coated devices: an individual patient data meta-analysis. Circulation. 2020;141(23):1859–69.

    PubMed  PubMed Central  Google Scholar 

  209. Albrecht T, Ukrow A, Werk M, Tepe G, Zeller T, Meyer DR, et al. Impact of patient and lesion characteristics on drug-coated balloon angioplasty in the femoropopliteal artery: a pooled analysis of four randomized controlled multicenter trials. Cardiovasc Intervent Radiol. 2019;42(4):495–504.

    PubMed  Google Scholar 

  210. Sachar R, Soga Y, Ansari MM, Kozuki A, Lopez L, Brodmann M, et al. 1-year results from the RANGER II SFA randomized trial of the ranger drug-coated balloon. JACC Cardiovasc Interv. 2021;14(10):1123–33.

    PubMed  Google Scholar 

  211. Secemsky EA, Kundi H, Weinberg I, Jaff MR, Krawisz A, Parikh SA, et al. Association of survival with femoropopliteal artery revascularization with drug-coated devices. JAMA Cardiol. 2019;4(4):332–40.

    PubMed  PubMed Central  Google Scholar 

  212. Secemsky EA, Kundi H, Weinberg I, Schermerhorn M, Beckman JA, Parikh SA, et al. Drug-eluting stent implantation and long-term survival following peripheral artery revascularization. J Am Coll Cardiol. 2019;73(20):2636–8.

    PubMed  Google Scholar 

  213. FDA Executive Summary. https://www.fda.gov/media/127698/download. Accessed April 24, 2022.

  214. Nordanstig J, James S, Andersson M, Andersson M, Danielsson P, Gillgren P, et al. Mortality with paclitaxel-coated devices in peripheral artery disease. N Engl J Med. 2020;383(26):2538–46.

    CAS  PubMed  Google Scholar 

  215. Hess CN, Patel MR, Bauersachs RM, Anand SS, Debus ES, Nehler MR, et al. Safety and effectiveness of paclitaxel drug-coated devices in peripheral artery revascularization: insights From VOYAGER PAD. J Am Coll Cardiol. 2021;78(18):1768–78.

    PubMed  Google Scholar 

  216. Dinh K, Limmer AM, Chen AZL, Thomas SD, Holden A, Schneider PA, et al. Mortality rates after paclitaxel-coated device use in patients with occlusive femoropopliteal disease: an updated systematic review and meta-analysis of randomized controlled trials. J Endovasc Ther. 2021;28(5):755–77.

    PubMed  Google Scholar 

  217. Secemsky EA, Shen C, Schermerhorn M, Yeh RW. Longitudinal assessment of safety of femoropopliteal endovascular treatment with paclitaxel-coated devices among medicare beneficiaries: the SAFE-PAD study. JAMA Intern Med. 2021;181(8):1071–80.

    PubMed  Google Scholar 

  218. di Palma G, Sanchez-Jimenez EF, Lazar L, Cortese B. Should paclitaxel be considered an old generation DCB? The limus era. Rev Cardiovasc Med. 2021;22(4):1323–30.

    PubMed  Google Scholar 

  219. Blaich R, Rupprecht W. Comparative chromatographic studies on arthropod cocoons. Naturwissenschaften. 1968;55(6):300–1.

    CAS  PubMed  Google Scholar 

  220. Ferreira LT, Figueiredo AC, Orr B, Lopes D, Maiato H. Dissecting the role of the tubulin code in mitosis. Methods Cell Biol. 2018;144:33–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Herdeg C, Oberhoff M, Baumbach A, Blattner A, Axel DI, Schroder S, et al. Local paclitaxel delivery for the prevention of restenosis: biological effects and efficacy in vivo. J Am Coll Cardiol. 2000;35(7):1969–76.

    CAS  PubMed  Google Scholar 

  222. Regar E, Serruys PW, Bode C, Holubarsch C, Guermonprez JL, Wijns W, et al. Angiographic findings of the multicenter Randomized Study With the Sirolimus-Eluting Bx Velocity Balloon-Expandable Stent (RAVEL): sirolimus-eluting stents inhibit restenosis irrespective of the vessel size. Circulation. 2002;106(15):1949–56.

    CAS  PubMed  Google Scholar 

  223. Lammer J, Bosiers M, Zeller T, Schillinger M, Boone E, Zaugg MJ, et al. First clinical trial of nitinol self-expanding everolimus-eluting stent implantation for peripheral arterial occlusive disease. J Vasc Surg. 2011;54(2):394–401.

    PubMed  Google Scholar 

  224. Lammer J, Scheinert D, Vermassen F, Koppensteiner R, Hausegger KA, Schroe H, et al. Pharmacokinetic analysis after implantation of everolimus-eluting self-expanding stents in the peripheral vasculature. J Vasc Surg. 2012;55(2):400–5.

    PubMed  Google Scholar 

  225. Duda SH, Pusich B, Richter G, Landwehr P, Oliva VL, Tielbeek A, et al. Sirolimus-eluting stents for the treatment of obstructive superficial femoral artery disease: six-month results. Circulation. 2002;106(12):1505–9.

    CAS  PubMed  Google Scholar 

  226. Duda SH, Bosiers M, Lammer J, Scheinert D, Zeller T, Tielbeek A, et al. Sirolimus-eluting versus bare nitinol stent for obstructive superficial femoral artery disease: the SIROCCO II trial. J Vasc Interv Radiol. 2005;16(3):331–8.

    PubMed  Google Scholar 

  227. Duda SH, Bosiers M, Lammer J, Scheinert D, Zeller T, Oliva V, et al. Drug-eluting and bare nitinol stents for the treatment of atherosclerotic lesions in the superficial femoral artery: long-term results from the SIROCCO trial. J Endovasc Ther. 2006;13(6):701–10.

    PubMed  Google Scholar 

  228. Li J, Tzafriri R, Patel SM, Parikh SA. Mechanisms underlying drug delivery to peripheral arteries. Interv Cardiol Clin. 2017;6(2):197–216.

    PubMed  Google Scholar 

  229. Zeller T, Brechtel K, Meyer DR, Noory E, Beschorner U, Albrecht T. Six-month outcomes from the first-in-human, single-arm SELUTION sustained-limus-release drug-eluting balloon trial in femoropopliteal lesions. J Endovasc Ther. 2020;27(5):683–90.

    PubMed  Google Scholar 

  230. Lemos PA, Farooq V, Takimura CK, Gutierrez PS, Virmani R, Kolodgie F, et al. Emerging technologies: polymer-free phospholipid encapsulated sirolimus nanocarriers for the controlled release of drug from a stent-plus-balloon or a stand-alone balloon catheter. EuroIntervention. 2013;9(1):148–56.

    PubMed  Google Scholar 

  231. El-Mokdad R, di Palma G, Cortese B. Long-term follow-up after sirolimus-coated balloon use for coronary artery disease. Final results of the Nanolute study. Catheter Cardiovasc Interv. 2020;96(5):E496–500.

    PubMed  Google Scholar 

  232. Tang TY, Soon SXY, Yap CJQ, Chan SL, Tan RY, Pang SC, et al. Early (6 months) results of a pilot prospective study to investigate the efficacy and safety of sirolimus coated balloon angioplasty for dysfunctional arterio-venous fistulas: MAgicTouch Intervention Leap for Dialysis Access (MATILDA) Trial. PLoS One. 2020;15(10):e0241321.

    CAS  PubMed  PubMed Central  Google Scholar 

  233. BLearning Peripheral. LINC 2020: XTOSI study interim findings suggest “highly promising” safety and efficacy of sirolimus DCB. https://blearning.net/sirolimus-dcb-safety. Accessed 31 August 2020.

  234. Sirolimus- vs. Paclitaxel-Drug Coated Balloons in Patients With Peripheral Artery Disease (SIRONA). NCT04475783. Clinicaltrials.gov website. https://clinicaltrials.gov/ct2/show/NCT04475783. Accessed 31 August 2021.

  235. Sirolimus Coated Balloon Versus Standard Balloon for SFA and Popliteal Artery Disease (FUTURE-SFA). Clinicaltrials.gov website. Accessed 31 August 2021.

  236. Secemsky EA, Kochar A. Illuminating the path for novel peripheral drug-eluting stents. JACC Cardiovasc Interv. 2022;15(6):627–9.

    PubMed  Google Scholar 

  237. Steiner S, Honton B, Langhoff R, Chiesa R, Kahlberg A, Thieme M, et al. 2-year results with a sirolimus-eluting self-expanding stent for femoropopliteal lesions: the first-in-human ILLUMINA study. JACC Cardiovasc Interv. 2022;15(6):618–26.

    PubMed  Google Scholar 

  238. Dawson I, Sie RB, van Bockel JH. Atherosclerotic popliteal aneurysm. BJS Br J Surg. 1997;84:293–9.

    CAS  Google Scholar 

  239. Tsilimparis N, Dayama A, Ricotta JJ. Open and endovascular repair of popliteal artery aneurysms: tabular review of the literature. Ann Vasc Surg. 2013;27:259–65.

    PubMed  Google Scholar 

  240. Farber A, Angle N, Avgerinos E, et al. The Society for Vascular Surgery clinical practice guidelines on popliteal artery aneurysms. J Vasc Surg. 2022;75:109S–20S.

    PubMed  Google Scholar 

  241. Phair A, Hajibandeh S, Hajibandeh S, Kelleher D, Ibrahim R, Antoniou GA. Meta-analysis of posterior versus medial approach for popliteal artery aneurysm repair. J Vasc Surg. 2016;64:1141–1150.e1.

    PubMed  Google Scholar 

  242. Antonello M, Frigatti P, Battocchio P, Lepidi S, Cognolato D, Dall’Antonia A, Stramanà R, Deriu GP, Grego F. Open repair versus endovascular treatment for asymptomatic popliteal artery aneurysm: results of a prospective randomized study. J Vasc Surg. 2005;42:185–93.

    PubMed  Google Scholar 

  243. Leake AE, Segal MA, Chaer RA, Eslami MH, Al-Khoury G, Makaroun MS, Avgerinos ED. Meta-analysis of open and endovascular repair of popliteal artery aneurysms. J Vasc Surg. 2017;65:246–256.e2.

    PubMed  Google Scholar 

  244. Beuschel B, Nayfeh T, Kunbaz A, Haddad A, Alzuabi M, Vindhyal S, Farber A, Murad MH. A systematic review and meta-analysis of treatment and natural history of popliteal artery aneurysms. J Vasc Surg. 2022;75:121S–125S.e14.

    PubMed  Google Scholar 

  245. Nguyen BN, Amdur RL, Abugideiri M, et al. Postoperative complications after common femoral endarterectomy. J Vasc Surg. 2015;61:1489–94.

    PubMed  Google Scholar 

  246. Ballotta E, Gruppo M, Mazzalai F, Da Giau G. Common femoral artery endarterectomy for occlusive disease: an 8-year single-center prospective study. Surgery. 2010;147:268–74.

    PubMed  Google Scholar 

  247. Kang JL, Patel VI, Conrad MF, Lamuraglia GM, Chung TK, Cambria RP. Common femoral artery occlusive disease: contemporary results following surgical endarterectomy. J Vasc Surg. 2008;48:872–7.

    PubMed  Google Scholar 

  248. Kechagias A, Ylonen K, Biancari F. Long-term outcome after isolated endarterectomy of the femoral bifurcation. World J Surg. 2008;32:51–4.

    PubMed  Google Scholar 

  249. Bonvini RF, Rastan A, Sixt S, et al. Endovascular treatment of common femoral artery disease: medium-term outcomes of 360 consecutive procedures. J Am Coll Cardiol. 2011;58:792–8.

    PubMed  Google Scholar 

  250. Siracuse JJ, Van Orden K, Kalish JA, et al. Vascular Quality Initiative. Endovascular treatment of the common femoral artery in the Vascular Quality Initiative. J Vasc Surg. 2017;65:1039–46.

    PubMed  Google Scholar 

  251. Shammas N, Doumet AA, Karia R, Khalafallah R. An overview of the treatment of symptomatic common femoral artery lesions with a focus on endovascular therapy. Vasc Health Risk Manag. 2020;16:67–73.

    PubMed  PubMed Central  Google Scholar 

  252. Deloose, Koen Full Cohort 24-Month Safety and Efficacy Results of the VMI-CFA Trial. VIVA: 2019.

    Google Scholar 

  253. Mehta M, Zhou Y, Paty PS, Teymouri M, Jafree K, Bakhtawar H, Hnath J, Feustel P. Percutaneous common femoral artery interventions using angioplasty, atherectomy, and stenting. J Vasc Surg. 2016;64(2):369–79.

    PubMed  Google Scholar 

  254. Cioppa A, Stabile E, Salemme L, Popusoi G, Pucciarelli A, et al. Combined use of directional atherectomy and drug-coated balloon for the endovascular treatment of common femoral artery disease: immediate and one-year outcomes. EuroIntervention. 2017;12:1789–94.

    PubMed  Google Scholar 

  255. Gouëffic Y, Schiava ND, Thaveau F, Rosset E, Favre J-P, et al. Stenting or surgery for de novo common femoral artery stenosis (TECCO Trial). J Am Coll Cardiol Intv. 2017;10(13):1344–54.

    Google Scholar 

  256. Shammas N, Shammas GA, Karia R, Khalafallah R, Jones-Miller S, et al. Two-year outcomes of endovascular interventions of the common femoral artery: a retrospective analysis from two medical centers. Cardiovasc Revasc Med. 2021;24:72–6.

    PubMed  Google Scholar 

  257. Klein AJ, James Chen S, Messenger JC, Hansgen AR, Plomondon ME, et al. Quantitative assessment of the conformational change in the femoropopliteal artery with leg movement. Catheter Cardiovasc Interv. 2009;74(5):787–98.

    PubMed  Google Scholar 

  258. Deloose K. Full Cohort 24-month safety and efficacy results of the VMI-CFA Trial. VIVA: 2019.

    Google Scholar 

  259. Dufranc J, Palcau L, Heyndrickx M, Gouicem D, Coffin O, Felisaz A, et al. Technique and results of femoral bifurcation endarterectomy by eversion. J Vasc Surg. 2015;61(3):728–33.

    PubMed  Google Scholar 

  260. Nguyen B-N, Amdur RL, Abugideiri M, Rahbar R, Neville RF, et al. Postoperative complications after common femoral endarterectomy. J Vasc Surg. 2015;61:1489–94.

    PubMed  Google Scholar 

  261. Carola Marie Wieker MD, Eva Schönefeld MD, Nani Osada DRM, Christina Lührs MD, Roland Beneking MD, et al. Results of common femoral artery thromboendarterectomy evaluation of a traditional surgical management in the endovascular era. J Vasc Surg. 2016;64:995–1001.

    PubMed  Google Scholar 

  262. Bonvini RF, Rastan A, Sixt S, Noory E, Schwarz T, et al. Endovascular treatment of common femoral artery disease: medium-term outcomes of 360 consecutive procedures. J Am Coll Cardiol. 2011;58:792–8.

    PubMed  Google Scholar 

  263. Azéma L, Davaine JM, Guyomarch B, Chaillou P, Costargent A, et al. Endovascular repair of common femoral artery and concomitant arterial lesions. Eur Soc Vasc Surg. 2011;41:1078–5884.

    Google Scholar 

  264. Linni K, Ugurluoglu A, Hitzl W, Aspalter M, ThomasHo l. Bioabsorbable stent implantation vs common femoral artery endarterectomy: early results of a randomized trial. J Endovasc Ther. 2014;21:493–502.

    PubMed  Google Scholar 

  265. Nasr B, Kaladji A, Vent P-A, Chaillou P, Costargent A, et al. Long-term outcomes of common femoral artery stenting. Ann Vasc Surg. 2017;40:10–8.

    PubMed  Google Scholar 

  266. Boufi M, Ejargue M, Gaye M, Boyer L, Alimi Y, et al. Systematic review and meta-analysis of endovascular versus open repair for common femoral artery atherosclerosis treatment. J Vasc Surg. 2021;73:1445–55.

    PubMed  Google Scholar 

  267. Siracuse JJ, Van Orden K, Kalish JA, Eslami MH, Schermerhorn ML, Patel VI, et al. Endovascular treatment of the common femoral artery in the Vascular Quality Initiative. J Vasc Surg. 2017;65(4):1039–46.

    PubMed  Google Scholar 

  268. Halpin D, Erben Y, Jayasuriya S, Cua B, Jhamnani S, Mena-Hurtado C. Management of isolated atherosclerotic stenosis of the common femoral artery: a review of the literature. Vasc Endovasc Surg. 2017;51(4):220–7.

    Google Scholar 

  269. Dattilo PB, Tsai TT, Kevin Rogers R, Casserly IP. Acute and medium-term outcomes of endovascular therapy of obstructive disease of diverse etiology of the common femoral artery. Catheter Cardiovasc Interv. 2013;81(6):1013–22.

    PubMed  Google Scholar 

  270. Drachman DE, Armstrong EJ. Stenting the common femoral artery: crossing the rubicon of endovascular treatment? JACC Cardiovasc Interv. 2017;10(13):1355–6.

    PubMed  Google Scholar 

  271. Tijani Y, Burgaud M, Hamel A, Raux M, Nasr B, Goueffic Y. The common femoral artery is a fixed arterial segment. Ann Vasc Surg. 2021;73:51–4.

    PubMed  Google Scholar 

  272. Ni Ghriallais R, Heraty K, Smouse B, Burke M, Gilson P, Bruzzi M. Deformation of the femoropopliteal segment: effect of stent length, location, flexibility, and curvature. J Endovasc Ther. 2016;23(6):907–18.

    PubMed  Google Scholar 

  273. Esposito A, Menna D, Baiano A, Benedetto P, Di Leo F, Cappiello AP. Eversion endarterectomy of the femoral bifurcation: technique, results and potential advantages. Ann Vasc Surg. 2020;66:580–5.

    PubMed  Google Scholar 

  274. Kwon J, Staley C, McCullough M, Goss S, Arosemena M, Abai B, et al. A randomized clinical trial evaluating negative pressure therapy to decrease vascular groin incision complications. J Vasc Surg. 2018;68(6):1744–52.

    PubMed  Google Scholar 

  275. Sapienza P, Napoli F, Tartaglia E, Venturini L, Sterpetti AV, Brachini G, et al. Infection of prosthetic patches after femoral endarterectomy: an unreported complication. Ann Vasc Surg. 2019;56:11–6.

    PubMed  Google Scholar 

  276. Uhl C, Gotzke H, Woronowicz S, Betz T, Topel I, Steinbauer M. Treatment of lymphatic complications after common femoral artery endarterectomy. Ann Vasc Surg. 2020;62:382–6.

    PubMed  Google Scholar 

  277. Nguyen BN, Amdur RL, Abugideiri M, Rahbar R, Neville RF, Sidawy AN. Postoperative complications after common femoral endarterectomy. J Vasc Surg. 2015;61(6):1489–94. e1

    PubMed  Google Scholar 

  278. Nunez AA, Veith FJ, Collier P, Ascer E, Flores SW, Gupta SK. Direct approaches to the distal portions of the deep femoral artery for limb salvage bypasses. J Vasc Surg. 1988;8(5):576–81. https://doi.org/10.1067/mva.1988.avs0080576.

    Article  CAS  PubMed  Google Scholar 

  279. Bertucci WR, Marin ML, Veith FJ, Ohki T. Posterior approach to the deep femoral artery. J Vasc Surg. 1999;29(4):741–4.

    CAS  PubMed  Google Scholar 

  280. Taurino M, Persiani F, Ficarelli R, Filippi F, Dito R, Rizzo L. The role of the profundoplasty in the modern management of patient with peripheral vascular disease. Ann Vasc Surg. 2017;45:16–21. https://doi.org/10.1016/j.avsg.2017.05.018. Epub 2017 May 24

    Article  PubMed  Google Scholar 

  281. Rollins DL, Towne JB, Bernhard VM, Baum PL. Isolated profundaplasty for limb salvage. J Vasc Surg. 1985;2(4):585–90.

    CAS  PubMed  Google Scholar 

  282. Boren CH, Towne JB, Bernhard VM, Salles-Cunha S. Profundapopliteal collateral index. A guide to successful profundaplasty. Arch Surg. 1980;115(11):1366–72.

    CAS  PubMed  Google Scholar 

  283. Khwaja HA, Omotoso PO. Bifurcated Dacron patch for simultaneous superficial femoroplasty and profundoplasty: a case report. J Med Case Rep. 2009;3:9294. https://doi.org/10.1186/1752-1947-3-9294.

    Article  PubMed  PubMed Central  Google Scholar 

  284. Dufranc J, Palcau L, Heyndrickx M, Gouicem D, Coffin O, Felisaz A, Berger L. Technique and results of femoral bifurcation endarterectomy by eversion. J Vasc Surg. 2015 Mar;61(3):728–33.

    PubMed  Google Scholar 

  285. Bernik T, Montoya M, Ibrahim I, Dardik H. Dropped bifurcation technique for femoral endarterectomy. Ann Vasc Surg. 2019;54:316–7.

    PubMed  Google Scholar 

  286. Darling RC 3rd, Shah DM, Change BB, Lloyd WE, Leather RP. Can the deep femoral artery be used reliably as an inflow source for infrainguinal reconstruction? Long-term results in 563 procedures. J Vasc Surg. 1994;20(6):889–94. discussion 894-5

    PubMed  Google Scholar 

  287. Kontopodis N, Lioudaki S, Chronis C, Kalogerakos P, Lazopoulos G, Papaioannou A, Ioannou CV. The use of the profunda femoral artery as the sole target vessel to bypass aortoiliac disease in patients with critical limb ischemia and concomitant unreconstructable infrainguinal disease. Ann Vasc Surg. 2018;48:45–52.

    PubMed  Google Scholar 

  288. Balasundaram N, Whitrock JN, Braet DJ, Vogel TR, Bath JM. Importance of the profunda femoris upon patency following aortoiliac procedures. J Vasc Surg. 2022:S0741-5214(22)00410-4. https://doi.org/10.1016/j.jvs.2022.02.043. Epub ahead of print.

  289. Prendiville EJ, Burke PE, Colgan MP, Wee BL, Moore DJ, Gregor Shanik D. The profunda femoris: a durable outflow vessel in aortofemoral surgery. J Vascu Surg. 1992;16(1):23–9.

    CAS  Google Scholar 

  290. Qato K, Nguyen N, Bouris V, Conway A, Ehidom C, Leung T, Giangola G, Carroccio A. Outcomes of endovascular management of isolated profunda femoris artery occlusive disease. Ann Vasc Surg. 2021;72:244–52.

    PubMed  Google Scholar 

  291. Darling RC 3rd, Shah DM, Change BB, Lloyd WE, Leather RP. Can the deep femoral artery be used reliably as an inflow source for infrainguinal reconstruction? Long-term results in 563 procedures. J Vasc Surg [Internet]. 1994;20(6):889–94. discussion 894-5.

    PubMed  Google Scholar 

  292. Donas KP, Pitoulias GA, Schwindt A, Schulte S, Camci M, Schlabach R, et al. Endovascular treatment of profunda femoris artery obstructive disease: nonsense or useful tool in selected cases? Eur J Vasc Endovasc Surg [Internet]. 2010;39(3):308–13.

    CAS  PubMed  Google Scholar 

  293. Qato K, Nguyen N, Bouris V, Conway A, Ehidom C, Leung T, et al. Outcomes of endovascular management of isolated profunda femoris artery occlusive disease. Ann Vasc Surg [Internet]. 2021;72:244–52.

    PubMed  Google Scholar 

  294. Bath J, Avgerinos E. A pooled analysis of common femoral and profunda femoris endovascular interventions. Vascular [Internet]. 2016;24(4):404–13.

    PubMed  Google Scholar 

  295. Conte MS, Bradbury AW, Kolh P, White JV, Dick F, Fitridge R, et al. Global vascular guidelines on the management of chronic limb-threatening ischemia. J Vasc Surg. 2019;69(6):3S–125S.e40.

    PubMed  PubMed Central  Google Scholar 

  296. Lowry D, Saeed M, Narendran P, Tiwari A. A review of distribution of atherosclerosis in the lower limb arteries of patients with diabetes mellitus and peripheral vascular disease. Vasc Endovasc Surg. 2018;52(7):535–42.

    Google Scholar 

  297. Woelfie KD, Lange G, Mayer H, Bruijnen H, Loeprecht H. Distal vein graft reconstruction for isolated tibioperoneal vessel occlusive disease in diabetics with critical foot ischaemia-does it work? Eur J Vasc Surg. 1993;7(4):409–13.

    Google Scholar 

  298. Veith FJ, Gupta SK, Samson RH, Flores SW, Janko G, Scher LA. Superficial femoral and popliteal arteries as inflow sites for distal bypasses. Surgery. 1981;90(6):980–90.

    CAS  PubMed  Google Scholar 

  299. Rosenbloom MS, Walsh JJ, Schuler JJ, Meyer JP, Schwarcz TH, Eldrup-Jorgensen J, et al. Long-term results of infragenicular bypasses with autogenous vein originating from the distal superficial femoral and popliteal arteries. J Vasc Surg. 1988;7(5):691–6.

    CAS  PubMed  Google Scholar 

  300. Ascer E, Veith FJ, Gupta SK, White SA, Bakal CW, Wengerter K, et al. Short vein grafts: a superior option for arterial reconstructions to poor or compromised outflow tracts? J Vasc Surg. 1988;7(2):370–8.

    CAS  PubMed  Google Scholar 

  301. Schneider PA, Caps MT, Ogawa DY, Hayman ES. Intraoperative superficial femoral artery balloon angioplasty and popliteal to distal bypass graft: an option for combined open and endovascular treatment of diabetic gangrene. J Vasc Surg. 2001;33(5):955–62.

    CAS  PubMed  Google Scholar 

  302. Uhl C, Hock C, Betz T, Töpel I, Steinbauer M. Pedal bypass surgery after crural endovascular intervention. J Vasc Surg. 2014;59(6):1583–7.

    PubMed  Google Scholar 

  303. Davidson JT, Callis JT. Arterial reconstruction of vessels in the foot and ankle. Ann Surg. 1993;217(6):699–710.

    PubMed  PubMed Central  Google Scholar 

  304. Hendawy K, Fatah MA, Ismail OAO, Ismail O, Essawy MG, Kader MA. Revascularization of a specific angiosome for limb salvage: does the target artery matter? Egypt J Radiol Nucl Med. 2019;50(1):84.

    Google Scholar 

  305. Pomposelli FB, Jepsen SJ, Gibbons GW, Campbell DR, Freeman DV, Miller A, et al. Efficacy of the dorsal pedal bypass for limb salvage in diabetic patients: Short-term observations. J Vasc Surg. 1990;11(6):745–52.

    PubMed  Google Scholar 

  306. Eiberg JP, Hansen MA, Jørgensen LG, Rasmussen JBG, Jensen F, Schroeder TV. In-situ bypass surgery on arteriographically invisible vessels detected by Doppler-ultrasound for limb salvage. J Cardiovasc Surg. 2004;45(4):375–9.

    CAS  Google Scholar 

  307. Pereira CE, Albers M, Romiti M, Brochado-Neto FC, Pereira CAB. Meta-analysis of femoropopliteal bypass grafts for lower extremity arterial insufficiency. J Vasc Surg. 2006;44(3):510–517.e3.

    PubMed  Google Scholar 

  308. Pomposelli FB, Jepsen SJ, Gibbons GW, Campbell DR, Freeman DV, Gaughan BM, et al. A flexible approach to infrapopliteal vein grafts in patients with diabetes mellitus. Arch Surg-chicago. 1991;126(6):724–9.

    PubMed  Google Scholar 

  309. Pomposelli FB, Kansal N, Hamdan AD, Belfield A, Sheahan M, Campbell DR, et al. A decade of experience with dorsalis pedis artery bypass: analysis of outcome in more than 1000 cases. J Vasc Surg. 2003;37(2):307–15.

    PubMed  Google Scholar 

  310. Seeger JM, Schmidt JH, Flynn TC. Preoperative saphenous and cephalic vein mapping as an adjunct to reconstructive arterial surgery. Ann Surg. 1987;205(6):733–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  311. Wengerter KR, Veith FJ, Gupta SK, Ascer E, Rivers SP. Influence of vein size (diameter) on infrapopliteal reversed vein graft patency. J Vasc Surg. 1990;11(4):525–31.

    CAS  PubMed  Google Scholar 

  312. Valentine J, Wind GG. Anatomic exposures in vascular surgery. 4th ed. Alphen aan den Rijn: Wolters Kluwer; 2021.

    Google Scholar 

  313. Chepte AP, Ambiye MV. Study of branching pattern of dorsalis pedis artery and its clinical significance. Anat Physiol Curr Res. 2018;8(3):1–5.

    Google Scholar 

  314. Yamada T, Gloviczki P, Bower TC, Naessens JM, Carmichael SW. Variations of the arterial anatomy of the foot. Am J Surg. 1993;166(2):130–5.

    CAS  PubMed  Google Scholar 

  315. Miller A, Marcaccio EJ, Tannenbaum GA, Kwolek CJ, Stonebridge PA, Lavin PT, et al. Comparison of angioscopy and angiography for monitoring infrainguinal bypass vein grafts: results of a prospective randomized trial. J Vasc Surg. 1993;17(2):382–98.

    CAS  PubMed  Google Scholar 

  316. Ferraresi R, Centola M, Ferlini M, Ros RD, Caravaggi C, Assaloni R, et al. Long-term outcomes after angioplasty of isolated, below-the-knee arteries in diabetic patients with critical limb ischaemia. J Vasc Surg. 2009;49(3):815.

    Google Scholar 

  317. Hughes K, Domenig CM, Hamdan AD, Schermerhorn M, Aulivola B, Blattman S, et al. Bypass to plantar and tarsal arteries: an acceptable approach to limb salvage. J Vasc Surg. 2004;40(6):1149–57.

    PubMed  Google Scholar 

  318. Darling RC, Shah DM, Chang BB, Lloyd WE, Paty PSK, Leather RP. Arterial reconstruction for limb salvage: is the terminal peroneal artery a disadvantaged outflow tract? Surgery. 1995;118(4):763–7.

    PubMed  Google Scholar 

  319. Elliott BM, Robison JG, Brothers TE, Cross MA. Limitations of peroneal artery bypass grafting for limb salvage. J Vasc Surg. 1993;18(5):881–8.

    CAS  PubMed  Google Scholar 

  320. Domenig CM, Hamdan AD, Holzenbein TJ, Kansal N, Aulivola B, Skillman JJ, et al. Timing of pedal bypass failure and its impact on the need for amputation. Ann Vasc Surg. 2005;19(1):56–62.

    PubMed  Google Scholar 

  321. Pelka M, Dieter RS. The Jury is still out on atherectomy. Cardiovasc Revasc Med. 2020;21(5):682–3. https://doi.org/10.1016/j.carrev.2020.05.024.

    Article  PubMed  Google Scholar 

  322. Gandini R, Pratesi G, Merolla S, Scaggiante J, Chegai F. A single-center experience with phoenix atherectomy system in patients with moderate to heavily calcified femoropopliteal lesions. Cardiovasc Revasc Med. 2020;21(5):676–81. https://doi.org/10.1016/j.carrev.2019.08.019. Epub 2019 Aug 23

    Article  PubMed  Google Scholar 

  323. Arthurs ZM, Bishop PD, Feiten LE, Eagleton MJ, Clair DG, Kashyap VS. Evaluation of peripheral atherosclerosis: a comparative analysis of angiography and intravascular ultrasound imaging. J Vasc Surg. 2010;51(4):933–8. https://doi.org/10.1016/j.jvs.2009.11.034. Epub 2010 Jan 15. discussion 939

    Article  PubMed  PubMed Central  Google Scholar 

  324. Cioppa A, Stabile E, Popusoi G, Salemme L, Cota L, Pucciarelli A, Ambrosini V, Sorropago G, Tesorio T, Agresta A, Biamino G, Rubino P. Combined treatment of heavy calcified femoro-popliteal lesions using directional atherectomy and a paclitaxel coated balloon: one-year single centre clinical results. Cardiovasc Revasc Med. 2012;13(4):219–23. https://doi.org/10.1016/j.carrev.2012.04.007. Epub 2012 May 25

    Article  PubMed  Google Scholar 

  325. Schwarzwälder U, Zeller T. Debulking procedures: potential device specific indications. Tech Vasc Interv Radiol. 2010;13(1):43–53. https://doi.org/10.1053/j.tvir.2009.10.006.

    Article  PubMed  Google Scholar 

  326. Babaev A, Halista M, Bakirova Z, Avtushka V, Matsumura M, Maehara A. Directional versus orbital atherectomy of femoropopliteal artery lesions: angiographic and intravascular ultrasound outcomes. Catheter Cardiovasc Interv. 2022; https://doi.org/10.1002/ccd.30339.

  327. Gupta R, Siada S, Lai S, Al-Musawi M, Malgor EA, Jacobs DL, Malgor RD. Critical appraisal of the contemporary use of atherectomy to treat femoropopliteal atherosclerotic disease. J Vasc Surg. 2022;75(2):697–708.e9. https://doi.org/10.1016/j.jvs.2021.07.106. Epub 2021 Jul 22

    Article  PubMed  Google Scholar 

  328. Shammas NW, Torey JT, Shammas WJ, Jones-Miller S, Shammas GA. Intravascular ultrasound assessment and correlation with angiographic findings of arterial dissections following auryon laser atherectomy and adjunctive balloon angioplasty: results of the idissection auryon laser study. J Endovasc Ther. 2022;29(1):23–31. https://doi.org/10.1177/15266028211028200. Epub 2021 Jun 28

    Article  PubMed  Google Scholar 

  329. Pan T, Tian SY, Liu Z, Zhang T, Li C, Ji DH. Combination of RotarexS rotational atherothrombectomy and drug-coated balloon angioplasty for femoropopliteal total in-stent occlusion. Ann Vasc Surg. 2022;80:213–22. https://doi.org/10.1016/j.avsg.2021.08.058. Epub 2021 Nov 5

    Article  PubMed  Google Scholar 

  330. Ferraresi R, Mauri G, Losurdo F, Troisi N, Brancaccio D, Caravaggi C, et al. BAD trans-mission and SAD distribution: a new scenario for critical limb ischemia. J Cardiovasc Surg. 2018;59(5):655–64.

    Google Scholar 

  331. Mustapha JA, Katzen BT, Neville RF, Lookstein RA, Zeller T, Miller LE, et al. Propensity score-adjusted comparison of long-term outcomes among revascularization strategies for critical limb ischemia. Circ Cardiovasc Interv. 2019;12(9):e008097.

    PubMed  Google Scholar 

  332. Palena LM, Saad PF, Piccolo E, et al. Below the ankle orbital atherectomy in chronic limb-threatening ischemia patients as a bailout strategy for limb salvage: Early Clinical Experience, Article in Press, published on line ahead of print. Cardiovasc Revasc Med.

    Google Scholar 

  333. Iashimori A, Iida O, Yamauchi Y, Kawasaki D, Nakamura M, Soga Y, et al. Outcomes of one straight-line flow with and without pedal arch in patients with critical limb ischemia. Catheter Cardiovasc Interv. 2016;87(1):129–33.

    Google Scholar 

  334. Manzi M, Fusaro M, Ceccacci T, Erente G, Dalla Paola L, Brocco E. Clinical results of below-the knee intervention using pedal-plantar loop technique for the revascularization of foot arteries. J Cardiovasc Surg. 2009;50(3):331–7.

    CAS  Google Scholar 

  335. Palena LM, Brocco E, Manzi M. The clinical utility of below-the-ankle angioplasty using “transmetatarsal artery access” in complex cases of CLI. Catheter Cardiovasc Interv. 2014;83(1):123–9.

    PubMed  Google Scholar 

  336. Hirsch AT, Duval S. The global pandemic of peripheral artery disease. Lancet. 2013;382(9901):1312–4.

    PubMed  Google Scholar 

  337. Gerhard-Herman MD. 2016 AHA/ACC Guideline on the Management of Patients With Lower Extremity Peripheral Artery Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines (vol 135, pg e726, 2017). Circulation. 2017;135(12):E791–E2.

    Google Scholar 

  338. Mustapha JA, Saab FA, Martinsen BJ, Pena CS, Zeller T, Driver VR, et al. Digital subtraction angiography prior to an amputation for critical limb ischemia (CLI): an expert recommendation statement from the CLI global society to optimize limb salvage. J Endovasc Ther. 2020;27(4):540–6.

    PubMed  Google Scholar 

  339. Utsunomiya M, Takahara M, Iida O, Yamauchi Y, Kawasaki D, Yokoi Y, et al. Wound blush obtainment is the most important angiographic endpoint for wound healing. JACC Cardiovasc Interv. 2017;10(2):188–94.

    PubMed  Google Scholar 

  340. Kozlow JH, Zwyghuizen AM, Wakefield TW. Chapter 39: Below- and above-the-knee amputation. In: Minter RM, Doherty GM, editors. Current procedures: surgery. New York: The McGraw-Hill Companies; 2010.

    Google Scholar 

  341. Park TH, Anand A. Management of diabetic foot: brief synopsis for busy orthopedist. J Clin Orthop Trauma. 2015;6(1):24–9. https://doi.org/10.1016/j.jcot.2014.10.003. Epub 2014 Nov 14

    Article  PubMed  Google Scholar 

  342. Miguel M, Bernadino Castelo Branco R, David GA, Kay RG, John M, Joseph L, Mills S. Diagnosis and endovascular management of segmental heel ischemia. Int. J Clin Cardiol. 2018;5(2) https://doi.org/10.23937/2378-2951/1410117.

  343. Iida O, Soga Y, Hirano K, Kawasaki D, Suzuki K, Miyashita Y, Terashi H, Uematsu M. Long-term results of direct and indirect endovascular revascularization based on the angiosome concept in patients with critical limb ischemia presenting with isolated below-the-knee lesions. J Vasc Surg. 2012;55(2):363–370.e5. https://doi.org/10.1016/j.jvs.2011.08.014. Epub 2011 Nov 1

    Article  PubMed  Google Scholar 

  344. Söderström M, Albäck A, Biancari F, Lappalainen K, Lepäntalo M, Venermo M. Angiosome-targeted infrapopliteal endovascular revascularization for treatment of diabetic foot ulcers. J Vasc Surg. 2013;57(2):427–35. https://doi.org/10.1016/j.jvs.2012.07.057. Epub 2012 Dec 7

    Article  PubMed  Google Scholar 

  345. Slawinski C, Kim I, Ahmad N. Orphan heel syndrome: a vascular perspective article points. Diabet Foot J. 2017;20:250–2

    Google Scholar 

  346. Dilaver N, Twine CP, Bosanquet DC. Editor's Choice - direct vs. indirect angiosomal revascularisation of infrapopliteal arteries, an updated systematic review and meta-analysis. Eur J Vasc Endovasc Surg. 2018;56(6):834–48. https://doi.org/10.1016/j.ejvs.2018.07.017. Epub 2018 Aug 24

    Article  PubMed  Google Scholar 

  347. Fujii M, Terashi H. Angiosome and tissue healing. Ann Vasc Dis. 2019;12(2):147–50. https://doi.org/10.3400/avd.ra.19-00036.

    Article  PubMed  PubMed Central  Google Scholar 

  348. Ji D, Zhang T, Li C, Liu Y, Wang F. Evaluation of angiosome-targeted infrapopliteal endovascular revascularization in critical diabetic limb ischemia. J Interv Med. 2019;1(3):176–81. https://doi.org/10.19779/j.cnki.2096-3602.2018.03.08.

    Article  PubMed  PubMed Central  Google Scholar 

  349. Utsunomiya M, Nakamura M, Nakanishi M, Takagi T, Hara H, Onishi K, Yamada T, Sugi K. Impact of wound blush as an angiographic end point of endovascular therapy for patients with critical limb ischemia. J Vasc Surg. 2012;55(1):113–21. https://doi.org/10.1016/j.jvs.2011.08.001. Epub 2011 Sep 22

    Article  PubMed  Google Scholar 

  350. Kum S, Tan YK, Schreve MA, et al. Midterm outcomes from a pilot study of percutaneous deep vein arterialization for the treatment of no-option critical limb ischemia. J Endovasc Ther. 2017;24:619–26.

    PubMed  Google Scholar 

  351. Béland M, Méthot M, Bradette S, et al. Venous arterialization with common endovascular devices. J Vasc Interv Radiol. 2019;30:570–1.

    PubMed  Google Scholar 

  352. Migliara B, Cappellari TF. A novel technique to create an arteriovenous fistula during total percutaneous deep foot venous arterialisation using an IVUS guided catheter. Eur J Vasc Endovasc Surg. 2018;55:735.

    PubMed  Google Scholar 

  353. Gandini R, Merolla S, Scaggiante J, et al. Endovascular distal plantar vein arterialization in dialysis patients with no-option critical limb ischemia and posterior tibial artery occlusion: a technique for limb salvage in a challenging patient subset. J Endovasc Ther. 2018;25:127–32.

    PubMed  Google Scholar 

  354. Ichihashi S, Shimohara Y, Bolstad F, et al. Simplified endovascular deep venous arterialization for non-option CLI patients by percutaneous direct needle puncture of tibial artery and vein under ultrasound guidance (AV Spear Technique). Cardiovasc Intervent Radiol. 2020;43:339–43.

    PubMed  Google Scholar 

  355. Ysa A, Lobato M, Mikelarena E, et al. Homemade device to facilitate percutaneous venous arterialization in patients with no-option critical limb ischemia. J Endovasc Ther. 2019;26:213–8.

    PubMed  Google Scholar 

  356. Ysa A, Lobato M. Reply to “Regarding: Homemade device to facilitate percutaneous venous arterialization in patients with no-option critical limb ischemia”. J Endovasc Ther. 2019;26:427–8.

    PubMed  Google Scholar 

  357. Ho VT, Gologorsky R, Kibrik P, Chandra V, Prent A, Lee J, et al. Open, percutaneous, and hybrid deep venous arterialization technique for no-option foot salvage. J Vasc Surg. 2020;71:2152–60.

    PubMed  Google Scholar 

  358. Ysa A, Lobato M. Complete update of the “state of the art” of percutaneous venous arterialization. J Vasc Surg. 2020;71:2185–7.

    PubMed  Google Scholar 

  359. Nakama T, Ichihashi S, Ogata K, Kojima S, Muraishi M, Obunai K, Watanabe H. Twelve-month clinical outcomes of percutaneous deep venous arterialization with alternative techniques and ordinary endovascular therapy devices for patients with chronic limb-threatening ischemia: results of the DEPARTURE Japan study. Cardiovasc Intervent Radiol. 2022; https://doi.org/10.1007/s00270-022-03095-1.

  360. Ferraresi R, Casini A, Losurdo F, Caminiti M, Ucci A, Longhi M, et al. Hybrid foot vein arterialization in no-option patients with critical limb ischemia: a preliminary report. J Endovasc Ther. 2019;26(1):7–17.

    PubMed  Google Scholar 

  361. Ichihashi S, Sato T, Iwakoshi S, Itoh H, Kichikawa K. Technique of percutaneous direct needle puncture of calcified plaque in the superficial femoral artery or tibial artery to facilitate balloon catheter passage and balloon dilation of calcified lesions. J Vasc Interv Radiol. 2014;25:784–8.

    PubMed  Google Scholar 

  362. Clair DG, Mustapha JA, Shishehbor MH, Schneider PA, Henao S, Bernardo NN, Deaton DH. PROMISE I: Early feasibility study of the LimFlow System for percutaneous deep vein arterialization in no-option chronic limb-threatening ischemia: 12-month results. J Vasc Surg. 2021;5:1626–35.

    Google Scholar 

  363. Schmidt A, Schreve MA, Huizing E, Del Giudice C, Branzan D, Ünlü Ç, et al. Midterm outcomes of percutaneous deep venous arterialization with a dedicated system for patients with no-option chronic limb-threatening ischemia: the ALPS multicenter study. J Endovasc Ther. 2020;27:658–65.

    PubMed  Google Scholar 

  364. Alexandrescu V, Ngongang C, Vincent G, Ledent G, Hubermont G. Deep calf veins arterialization for inferior limb preservation in diabetic patients with extended ischaemic wounds, unfit for direct arterial reconstruction: preliminary results according to an angiosome model of perfusion. Cardiovasc Revasc Med. 2011;12(1):10–9.

    PubMed  Google Scholar 

  365. Ysa A, Lobato M, Mikelarena E, Arruabarrena A, Gómez R, Apodaka A, Metcalfe M, Fonseca JL. Homemade device to facilitate percutaneous venous arterialization in patients with no-option critical limb ischemia. J Endovasc Ther. 2019;26(2):213–8.

    PubMed  Google Scholar 

  366. Gandini R, Merolla S, Scaggiante J, Meloni M, Giurato L, Uccioli L, Konda D. Endovascular distal plantar vein arterialization in dialysis patients with no-option critical limb ischemia and posterior tibial artery occlusion: a technique for limb salvage in a challenging patient subset. J Endovasc Ther. 2018;25(1):127–32.

    PubMed  Google Scholar 

  367. Schmidt A, Schreve MA, Huizing E, Del Giudice C, Branzan D, Ünlü Ç, Varcoe RL, Ferraresi R, Kum S. Midterm outcomes of percutaneous deep venous arterialization with a dedicated system for patients with no-option chronic limb-threatening ischemia: the ALPS multicenter study. J Endovasc Ther. 2020;27(4):658–65.

    PubMed  Google Scholar 

  368. Schreve MA, Huizing E, Kum S, de Vries JPP, de Borst GJ, Ünlü Ç. Volume flow and peak systolic velocity of the arteriovenous circuit in patients after percutaneous deep venous arterialization. Diagnostics. 2020;10(10):760.

    PubMed  PubMed Central  Google Scholar 

  369. Cangiano G, Corvino F, Giurazza F, De Feo EM, Fico F, Palumbo V, Amodio F, Silvestre M, Corvino A, Niola R. Percutaneous deep foot vein arterialization IVUS-guided in no-option critical limb ischemia diabetic patients. Vasc Endovasc Surg. 2021;55(1):58–63.

    Google Scholar 

  370. Del Giudice C, Van Den Heuvel D, Wille J, Mirault T, Messas E, Ferraresi R, Kum S, Sapoval M. Percutaneous deep venous arterialization for severe critical limb ischemia in patients with no option of revascularization: early experience from two European centers. Cardiovasc Intervent Radiol. 2018;41(10):1474–80.

    PubMed  Google Scholar 

  371. Kum S, Huizing E, Schreve MA, Unlu C, Ferraresi R, Samarakoon LB, van den Heuvel DA. Percutaneous deep venous arterialization in patients with critical limb ischemia. J Cardiovasc Surg. 2018;59(5):665–9.

    Google Scholar 

  372. Schmidli J, Widmer MK, Basile C, de Donato G, Gallieni M, Gibbons CP, Haage P, Hamilton G, Hedin U, Kamper L, Lazarides MK, Lindsey B, Mestres G, Pegoraro M, Roy J, Setacci C, Shemesh D, JHM T, van Loon M, Committee EG, Kolh P, de Borst GJ, Chakfe N, Debus S, Hinchliffe R, Kakkos S, Koncar I, Lindholt J, Naylor R, Vega de Ceniga M, Vermassen F, Verzini F, Reviewers EG, Mohaupt M, Ricco JB, Roca-Tey R. Editor’s choice–vascular access: 2018 clinical practice guidelines of the European Society for Vascular Surgery (ESVS). Eur J Vasc Endovasc Surg. 2018;55(6):757–818.

    PubMed  Google Scholar 

  373. Sprengers RW, Teraa M, Moll FL, de Wit GA, van der Graaf Y, Verhaar MC, JUVENTAS Study Group; SMART Study Group. Quality of life in patients with no-option critical limb ischemia underlines the need for new effective treatment. J Vasc Surg. 2010;52:843–9.e1.

    PubMed  Google Scholar 

  374. Kim TI, Vartanian SS, Schneider PA. A review and proposed classification system for the no-option patient with chronic limb- threatening ischemia. J Endovasc Ther. 2021;28:183–93.

    PubMed  Google Scholar 

  375. Ferraresi R, Ucci A, Pizzuto A, Losurdo F, Caminiti M, Minnella D, et al. A novel scoring system for small artery disease and medial arterial calcification is strongly associated with major adverse limb events in patients with chronic limb-threatening ischemia. J Endovasc Ther. 2021;28:194–207.

    PubMed  Google Scholar 

  376. Miranda J, Pallister Z, Sharath S, Ferrer L, Chung J, Lepow B, Mills J, Montero-Baker M. Early experience with venous arterialization for limb salvage in no-option patients with chronic limb-threatening ischemia. J Vasc Surg. 2022:1–10.

    Google Scholar 

  377. Ferraresi R, Casini A, Losurdo F, Caminiti M, Ucci A, Longhi M, Schreve M, Lichtenberg M, Kum S, Clerici G. Hybrid foot vein arterialization in no-option patients with critical limb ischemia: a preliminary report. J Endovasc Ther. 2019;26(1):7–17.

    PubMed  Google Scholar 

  378. Kum S, Tan YK, Schreve MA, Ferraresi R, Varcoe RL, Schmidt A, Scheinert D, Mustapha JA, Lim DM, Ho D, Tang TY, Alexandrescu VA, Mutirangura P. Midterm outcomes from a pilot study of percutaneous deep vein arterialization for the treatment of no-option critical limb ischemia. J Endovasc Ther. 2017;24(5):619–26.

    PubMed  Google Scholar 

  379. Clair DG, Mustapha JA, Shishehbor MH, Schneider PA, Henao S, Bernardo NN, Deaton DH. PROMISE I early feasibility study of the LimFlow System for percutaneous deep vein arterialization in no-option chronic limb-threatening ischemia 12-month results. J Vasc Surg. 2021 May 18:S0741-5214(21)00737-0.

    Google Scholar 

  380. Schmidt A, Schreve MA, Huizing E, Del Giudice C, Branzan D, Ünlü Ç, Varcoe RL, Ferraresi R, Kum S. Midterm outcomes of percutaneous deep venous arterialization with a dedicated system for patients with no-option chronic limb-threatening ischemia: the ALPS multicenter study. J Endovasc Ther. 2020 Aug;27(4):658–65.

    PubMed  Google Scholar 

  381. Second Round of Late-Breaking Clinical Trials Announced at VIVA 2022. https://viva-foundation.org/news-article?id=159162. Nov 2022.

  382. Saab F, Mustapha J, Ansari M, Pupp G, Madassery S, N’Dandu Z, Wiechmann B, Bernstein R, Mize A, Pliagas G. Percutaneous deep vein arterialization: treatment of patients with end-stage plantar disease. JSCAI. 2022; https://doi.org/10.1016/j.jscai.2022.100437.

  383. Indes JE, Mandawat A, Tuggle CT, Muhs B, Sosa JA. Endovascular procedures for aorto-iliac occlusive disease are associated with superior short-term clinical and economic outcomes compared with open surgery in the inpatient population. J Vasc Surg. 2010;52(5):1173–9. 1179.e1

    PubMed  Google Scholar 

  384. Kashyap VS, Pavkov ML, Bena JF, Sarac TP, O'Hara PJ, Lyden SP, Clair DG. The management of severe aortoiliac occlusive disease: endovascular therapy rivals open reconstruction. J Vasc Surg. 2008;48(6):1451–7. https://doi.org/10.1016/j.jvs.2008.07.004. 1457.e1–3. Epub 2008 Sep 19

    Article  PubMed  Google Scholar 

  385. Shu J, Santulli G. Update on peripheral artery disease: Epidemiology and evidence-based facts. Atherosclerosis. 2018;275:379–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  386. Hughes K, Seetahal S, Oyetunji T, et al. Racial/ethnic disparities in amputation and revascularization: a nationwide inpatient sample study. Vasc Endovasc Surg. 2014;48(1):34–7.

    Google Scholar 

  387. Collins TC, Johnson M, Henderson W, Khuri SF, Daley J. Lower extremity nontraumatic amputation among veterans with peripheral arterial disease: is race an independent factor? Med Care. 2002;40(1 Suppl):I106–16.

    PubMed  Google Scholar 

  388. Carnethon MR, Pu J, Howard G, et al. Cardiovascular health in African Americans: a scientific statement from the American Heart Association. Circulation. 2017;136(21):e393–423.

    PubMed  Google Scholar 

  389. Lackland DT. Racial differences in hypertension: implications for high blood pressure management. Am J Med Sci. 2014;348(2):135–8.

    PubMed  PubMed Central  Google Scholar 

  390. Ford ES. Trends in mortality from all causes and cardiovascular disease among hypertensive and nonhypertensive adults in the United States. Circulation. 2011;123(16):1737–44.

    PubMed  Google Scholar 

  391. Lackland DT, Keil JE, Gazes PC, Hames CG, Tyroler HA. Outcomes of black and white hypertensive individuals after 30 years of follow-up. Clin Exp Hypertens N Y N 1993. 1995;17(7):1091–105.

    CAS  Google Scholar 

  392. Huen KH, Chowdhury R, Shafii SM, et al. Smoking cessation is the least successful outcome of risk factor modification in uninsured patients with symptomatic peripheral arterial disease. Ann Vasc Surg. 2015;29(1):42–9.

    PubMed  Google Scholar 

  393. Mensah GA. Cardiovascular diseases in African Americans: fostering community partnerships to stem the tide. Am J Kidney Dis. 2018;72(5 Suppl 1):S37–42.

    PubMed  PubMed Central  Google Scholar 

  394. Willigendael EM, Teijink JAW, Bartelink ML, et al. Influence of smoking on incidence and prevalence of peripheral arterial disease. J Vasc Surg. 2004;40(6):1158–65.

    PubMed  Google Scholar 

  395. Wang W, Zhao T, Geng K, Yuan G, Chen Y, Xu Y. Smoking and the pathophysiology of peripheral artery disease. Front Cardiovasc Med. 2021;8. https://www.frontiersin.org/article/10.3389/fcvm.2021.704106 (Accessed April 9, 2022).

  396. Smith GD, Shipley MJ, Rose G. Intermittent claudication, heart disease risk factors, and mortality. The whitehall study. Circulation. 1990;82(6):1925–31.

    CAS  PubMed  Google Scholar 

  397. General USPHSO of the S, Health NC for CDP and HP (US) O on S and. The Health Benefits of Smoking Cessation. US Department of Health and Human Services; 2020. https://www.ncbi.nlm.nih.gov/books/NBK555590/. Accessed 9 April 2022.

  398. Caraballo RS, Kruger J, Asman K, et al. Relapse among cigarette smokers: the CARDIA longitudinal study – 1985–2011. Addict Behav. 2014;39(1):101–6.

    PubMed  Google Scholar 

  399. Kulak JA, Cornelius ME, Fong GT, Giovino GA. Differences in quit attempts and cigarette smoking abstinence between whites and African Americans in the United States: literature review and results from the international tobacco control US survey. Nicotine Tob Res. 2016;18(Suppl. 1):S79–87.

    PubMed  PubMed Central  Google Scholar 

  400. Keith VM, Nguyen AW, Taylor RJ, Mouzon DM, Chatters LM. Microaggressions, discrimination, and phenotype among African Americans: a latent class analysis of the impact of skin tone and BMI. Sociol Inq. 2017;87(2):233–55.

    PubMed  PubMed Central  Google Scholar 

  401. Munro HM, Tarone RE, Wang TJ, Blot WJ. Menthol and nonmenthol cigarette smoking: all-cause deaths, cardiovascular disease deaths, and other causes of death among blacks and whites. Circulation. 2016;133(19):1861–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  402. Delnevo CD, Gundersen DA, Hrywna M, Echeverria SE, Steinberg MB. Smoking-cessation prevalence among U.S. smokers of menthol versus non-menthol cigarettes. Am J Prev Med. 2011;41(4):357–65. https://doi.org/10.1016/j.amepre.2011.06.039.

    Article  PubMed  Google Scholar 

  403. Arya S, Khakharia A, Binney ZO, et al. Association of statin dose with amputation and survival in patients with peripheral artery disease. Circulation. 2018;137(14):1435–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  404. Nanna MG, Navar AM, Zakroysky P, et al. Association of patient perceptions of cardiovascular risk and beliefs on statin drugs with racial differences in statin use: insights from the patient and provider assessment of lipid management registry. JAMA Cardiol. 2018;3(8):739–48.

    PubMed  PubMed Central  Google Scholar 

  405. Fields LE, Burt VL, Cutler JA, Hughes J, Roccella EJ, Sorlie P. The burden of adult hypertension in the United States 1999 to 2000: a rising tide. Hypertens Dallas Tex 1979. 2004;44(4):398–404.

    CAS  Google Scholar 

  406. Golden SH, Brown A, Cauley JA, et al. Health disparities in endocrine disorders: biological, clinical, and nonclinical factors--an Endocrine Society scientific statement. J Clin Endocrinol Metab. 2012;97(9):E1579–639.

    PubMed  PubMed Central  Google Scholar 

  407. Schubert M, Hansen S, Leefmann J, Guan K. Repurposing antidiabetic drugs for cardiovascular disease. Front Physiol. 2020;11:568632.

    PubMed  PubMed Central  Google Scholar 

  408. Durazzo TS, Frencher S, Gusberg R. Influence of race on the management of lower extremity ischemia: revascularization vs amputation. JAMA Surg. 2013;148(7):617–23.

    PubMed  Google Scholar 

  409. Holman KH, Henke PK, Dimick JB, Birkmeyer JD. Racial disparities in the use of revascularization before leg amputation in Medicare patients. J Vasc Surg. 2011;54(2):420–6. 426.e1

    PubMed  PubMed Central  Google Scholar 

  410. Rizzo JA, Chen J, Laurich C, et al. Racial disparities in PAD-related amputation rates among native americans and non-hispanic whites: an HCUP analysis. J Health Care Poor Underserved. 2018;29(2):782–800.

    PubMed  Google Scholar 

  411. Loja MN, Brunson A, Li CS, et al. Racial disparities in outcomes of endovascular procedures for peripheral arterial disease: an evaluation of California hospitals, 2005–2009. Ann Vasc Surg. 2015;29(5):950–9.

    PubMed  PubMed Central  Google Scholar 

  412. Selvarajah S, Black JH, Haider AH, Abularrage CJ. Racial disparity in early graft failure after infrainguinal bypass. J Surg Res. 2014;190(1):335–43.

    PubMed  Google Scholar 

  413. Gandjian M, Sareh S, Premji A, et al. Racial disparities in surgical management and outcomes of acute limb ischemia in the United States. Surg Open Sci. 2021;6:45–50.

    PubMed  PubMed Central  Google Scholar 

  414. Nejim B, Beaulieu RJ, Alshaikh H, Hamouda M, Canner J, Malas MB. A unique All-payer rate-setting system controls the cost but not the racial disparity in lower extremity revascularization procedures. Ann Vasc Surg. 2018;52:116–25.

    PubMed  Google Scholar 

  415. Hirsch AT, Allison MA, Gomes AS, et al. A call to action: women and peripheral artery disease: a scientific statement from the American Heart Association. Circulation. 2012;125(11):1449–72.

    PubMed  Google Scholar 

  416. Ortmann J, Nüesch E, Traupe T, Diehm N, Baumgartner I. Gender is an independent risk factor for distribution pattern and lesion morphology in chronic critical limb ischemia. J Vasc Surg. 2012;55(1):98–104.

    PubMed  Google Scholar 

  417. Hirsch AT, Murphy TP, Lovell MB, et al. Gaps in public knowledge of peripheral arterial disease: the first national PAD public awareness survey. Circulation. 2007;116(18):2086–94.

    PubMed  Google Scholar 

  418. Hamburg NM. Clinical outcomes of women with PAD. J Am Coll Cardiol. 2020;75(6):618–9.

    PubMed  Google Scholar 

  419. Vouyouka AG, Egorova NN, Salloum A, et al. Lessons learned from the analysis of gender effect on risk factors and procedural outcomes of lower extremity arterial disease. J Vasc Surg. 2010;52(5):1196–202.

    PubMed  Google Scholar 

  420. Schramm K, Rochon PJ. Gender differences in peripheral vascular disease. Semin Interv Radiol. 2018;35(1):9–16.

    Google Scholar 

  421. Grenon SM, Cohen BE, Smolderen K, Vittinghoff E, Whooley MA, Hiramoto J. Peripheral arterial disease, gender, and depression in the Heart and Soul Study. J Vasc Surg. 2014;60(2):396–403.

    PubMed  PubMed Central  Google Scholar 

  422. Barochiner J, Aparicio LS, Waisman GD. Challenges associated with peripheral arterial disease in women. Vasc Health Risk Manag. 2014;10:115–28.

    PubMed  PubMed Central  Google Scholar 

  423. Hooi JD, Kester AD, Stoffers HE, Overdijk MM, van Ree JW, Knottnerus JA. Incidence of and risk factors for asymptomatic peripheral arterial occlusive disease: a longitudinal study. Am J Epidemiol. 2001;153(7):666–72.

    CAS  PubMed  Google Scholar 

  424. McDermott MM, Fried L, Simonsick E, Ling S, Guralnik JM. Asymptomatic peripheral arterial disease is independently associated with impaired lower extremity functioning: the women’s health and aging study. Circulation. 2000;101(9):1007–12.

    CAS  PubMed  Google Scholar 

  425. McDermott MM, Greenland P, Liu K, et al. Sex differences in peripheral arterial disease: leg symptoms and physical functioning. J Am Geriatr Soc. 2003;51(2):222–8.

    PubMed  Google Scholar 

  426. Hirsch AT, Criqui MH, Treat-Jacobson D, et al. Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA. 2001;286(11):1317–24.

    CAS  PubMed  Google Scholar 

  427. Pande RL, Hiatt WR, Zhang P, Hittel N, Creager MA. A pooled analysis of the durability and predictors of treatment response of cilostazol in patients with intermittent claudication. Vasc Med Lond Engl. 2010;15(3):181–8.

    Google Scholar 

  428. Lundgren F, Dahllöf AG, Lundholm K, Scherstén T, Volkmann R. Intermittent claudication--surgical reconstruction or physical training? A prospective randomized trial of treatment efficiency. Ann Surg. 1989;209(3):346–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  429. Egorova N, Vouyouka AG, Quin J, et al. Analysis of gender-related differences in lower extremity peripheral arterial disease. J Vasc Surg. 2010;51(2):372–378.e1.

    PubMed  Google Scholar 

  430. Freisinger E, Malyar NM, Reinecke H, Unrath M. Low rate of revascularization procedures and poor prognosis particularly in male patients with peripheral artery disease – a propensity score matched analysis. Int J Cardiol. 2018;255:188–94.

    PubMed  Google Scholar 

  431. Gallagher KA, Meltzer AJ, Ravin RA, et al. Gender differences in outcomes of endovascular treatment of infrainguinal peripheral artery disease. Vasc Endovasc Surg. 2011;45(8):703–11.

    Google Scholar 

  432. Jackson EA, Munir K, Schreiber T, et al. Impact of sex on morbidity and mortality rates after lower extremity interventions for peripheral arterial disease: observations from the Blue Cross Blue Shield of Michigan Cardiovascular Consortium. J Am Coll Cardiol. 2014;63(23):2525–30.

    PubMed  Google Scholar 

  433. Hernández Mateo MM, Martínez López I, Revuelta Suero S, et al. Clinical outcomes after endovascular treatment failure in patients with femoropopliteal occlusive disease. Ann Vasc Surg. 2016;30:299–304.

    PubMed  Google Scholar 

  434. Lee MS, Choi BG, Hollowed J, et al. Assessment of sex differences in 5-year clinical outcomes following endovascular revascularization for peripheral artery disease. Cardiovasc Revasc Med Mol Interv. 2020;21(1):110–5.

    Google Scholar 

  435. Margolis DJ, Hoffstad O, Nafash J, et al. Location, location, location: geographic clustering of lower-extremity amputation among medicare beneficiaries with diabetes. Diabetes Care. 2011;34(11):2363–7.

    PubMed  PubMed Central  Google Scholar 

  436. Skrepnek GH, Mills JL, Armstrong DG. A diabetic emergency one million feet long: disparities and burdens of illness among diabetic foot ulcer cases within emergency departments in the United States, 2006–2010. PLoS One. 2015;10(8):e0134914.

    PubMed  PubMed Central  Google Scholar 

  437. McGinigle KL, Minc SD. Disparities in amputation in patients with peripheral arterial disease. Surgery. 2021;169(6):1290–4.

    PubMed  Google Scholar 

  438. Goodney PP, Travis LL, Nallamothu BK, et al. Variation in the use of lower extremity vascular procedures for critical limb ischemia. Circ Cardiovasc Qual Outcomes. 2012;5(1):94–102.

    PubMed  Google Scholar 

  439. Goodney PP, Holman K, Henke PK, et al. Regional intensity of vascular care and lower extremity amputation rates. J Vasc Surg. 2013;57(6):1471–1480.e3.

    PubMed  PubMed Central  Google Scholar 

  440. Soden PA, Zettervall SL, Deery SE, et al. Black patients present with more severe vascular disease and a greater burden of risk factors than white patients at time of major vascular intervention. J Vasc Surg. 2018;67(2):549–556.e3.

    PubMed  Google Scholar 

  441. Song P, Rudan D, Zhu Y, et al. Global, regional, and national prevalence and risk factors for peripheral artery disease in 2015: an updated systematic review and analysis. Lancet Glob Health. 2019;7(8):e1020–30.

    PubMed  Google Scholar 

  442. Johnston LE, Stewart BT, Yangni-Angate H, et al. Peripheral arterial disease in sub-saharan Africa: a review. JAMA Surg. 2016;151(6):564–72.

    PubMed  Google Scholar 

  443. Kengne AP, Echouffo-Tcheugui JB. Differential burden of peripheral artery disease. Lancet Glob Health. 2019;7(8):e980–1.

    PubMed  Google Scholar 

  444. Farber A, Menard MT, Conte MS, Kaufman JA, Powell RJ, Choudhry NK, Hamza TH, Assman SF, Creager MA, Cziraky MJ, Dake MD, for the BEST-CLI Investigators, Jaff MR, et al. Surgery or endovascular therapy for chronic limb-threatening ischemia. N Engl J Med. 2022;387:2305–16.

    PubMed  Google Scholar 

  445. Teraa M, Conte MS, Moll FL, Verhaar MC. Critical limb ischemia: current trends and future directions. J AHA. 2016;5:e002938.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, I. et al. (2023). Arterial Revascularization. In: Madassery, S., Patel, A. (eds) Limb Preservation for the Vascular Specialist. Springer, Cham. https://doi.org/10.1007/978-3-031-36480-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36480-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36479-2

  • Online ISBN: 978-3-031-36480-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics