Skip to main content

Anaerobic Dynamic Membrane Bioreactors for the Domestic Wastewater Treatment

  • Chapter
  • First Online:
Wastewater Management and Technologies

Part of the book series: Water and Wastewater Management ((WWWE))

  • 166 Accesses

Abstract

Global population growth, urbanization, and industrialization have increased water demand and the need of treatment and reuse of wastewater. Conventional processes such as activated sludge and trickling filters are used for the treatment of domestic wastewater. These processes can be combined with membrane technology to generate water for reuse. Membrane technologies that are implemented in biological treatment processes typically include membrane bioreactors (MBR) and anaerobic membrane bioreactor (AnMBR) systems. Although MBR/AnMBR systems can produce high-quality effluents, their practical use may be limited due to disadvantages such as the condensation of the cake layer and potential clogs in the MBR/AnMBR system. As a result, capital investment as well as operation and maintenance of MBR systems tends to be costly for municipalities worldwide. As an alternative, dynamic membrane (DM) technology has been developed to offer economical and operational advantages over MBR/AnMBR. Dynamic membrane (cake) is a layer made of using a low-cost and porous support material (e.g., mesh, woven, and nonwoven fabric) that serves as a primary filter of biological granules. Thus, DM technology offers a cost-effective operation that can be combined with various anaerobic processes such as up-flow anaerobic sludge bed (UASB) or conventional anaerobic digesters. In this review, important factors affecting the performance of anaerobic dynamic membrane bioreactor processes are examined with respect to applicability of this technology in domestic wastewater treatment and reuse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang, J., Monnot, M., Ercolei, L., & Moulin, P. (2020). Membrane-Based processes used in municipal wastewater treatment for water reuse: State-of-the-Art and performance analysis. Membranes, 10(6), 131.

    ArticleĀ  CASĀ  Google ScholarĀ 

  2. Wu, J., Zhang, Y., Wang, J., Zheng, X., & Chen, Y. (2021). Municipal wastewater reclamation and reuse using membrane-based technologies: A review. Desalination and Water Treatment, 224, 65ā€“82.

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. Kehrein, P., Jafari, M., Slagt, M., Cornelissen, E., Osseweijer, P., Posada, J., & van Loosdrecht, M. (2021). A techno-economic analysis of membrane-based advanced treatment processes for the reuse of municipal wastewater. Journal of Water Reuse and Desalination, 11(4), 705ā€“725.

    ArticleĀ  CASĀ  Google ScholarĀ 

  4. Yang, J., Monnot, M., Eljaddi, T., Ercolei, L., Simonian, L., & Moulin, P. (2021). Ultrafiltration as tertiary treatment for municipal wastewater reuse. Separation and Purification Technology, 272, 118921.

    ArticleĀ  CASĀ  Google ScholarĀ 

  5. Liao, B.-Q., Kraemer, J. T., & Bagley, D. M. (2006). Anaerobic membrane bioreactors: Applications and research directions. Critical Reviews in Environmental Science and Technology, 36(6), 489ā€“530.

    ArticleĀ  CASĀ  Google ScholarĀ 

  6. Lei, Z., Yang, S., Li, Y., Wen, W., Wang, X. C., & Chen, R. (2018). Application of anaerobic membrane bioreactors to municipal wastewater treatment at ambient temperature: A review of achievements, challenges, and perspectives. Bioresource Technology, 267, 756ā€“768.

    ArticleĀ  CASĀ  Google ScholarĀ 

  7. Shoener, B. D., Zhong, C., Greiner, A. D., Khunjar, W. O., Hong, P.-Y., & Guest, J. S. (2016). Design of anaerobic membrane bioreactors for the valorization of dilute organic carbon waste streams. Energy & Environmental Science, 9, 1102ā€“1112.

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Ozgun, H., Dereli, R. K., Ersahin, M. E., Kinaci, C., Spanjers, H., & Van Lier, J. B. (2013). A review of anaerobic membrane bioreactors for municipal wastewater treatment: Integration options, limitations and expectations. Separation and Purification Technology, 118, 89ā€“104.

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Lim, S. J., & Kim, T.-H. (2014). Applicability and trends of anaerobic granular sludge treatment processes. Biomass and Bioenergy, 60, 189ā€“202.

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Smith, A. L., Stadler, L. B., Love, N. G., Skerlos, S. J., & Raskin, L. (2012). Perspectives on anaerobic membrane bioreactor treatment of domestic wastewater: A critical review. Bioresource Technology, 122, 149ā€“159.

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Dereli, R. K., Ersahin, M. E., Ozgun, H., Ozturk, I., Jeison, D., van der Zee, F., & van Lier, J. B. (2012). Potentials of anaerobic membrane bioreactors to overcome treatment limitations induced by industrial wastewaters. Bioresource Technology, 122, 160ā€“170.

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. Huang, Z., Ong, S. L., & Ng, H. Y. (2011). Submerged anaerobic membrane bioreactor for low-strength wastewater treatment: Effect of HRT and SRT on treatment performance and membrane fouling. Water Research, 45, 705ā€“713.

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Lew, B., Lustig, I., Beliavski, M., Tarre, S., & Green, M. (2011). An integrated UASB-sludge digester system for raw domestic wastewater treatment in temperate climates. Bioresource Technology, 102, 4921ā€“4924.

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Ho, J. H., Khanal, S. K., & Sung, S. (2007). Anaerobic membrane bioreactor for treatment of synthetic municipal wastewater at ambient temperature. Water Science Technology, 55(7), 79ā€“86.

    ArticleĀ  CASĀ  Google ScholarĀ 

  15. Dong, Q., Parker, W., & Dagnew, D. (2016). Long term performance of membranes in an anaerobic membrane bioreactor treating municipal wastewater. Chemosphere, 144, 249ā€“256.

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Mei, X., Wang, Z., Miao, Y., & Wu, Z. (2018). A pilot-scale anaerobic membrane bioreactor under short hydraulic retention time for municipal wastewater treatment: Performance and microbial community identification. Journal of Water Reuse and Desalination, 8(1), 58ā€“67.

    ArticleĀ  Google ScholarĀ 

  17. Evans, P. J., Parameswaran, P., Lim, K., Bae, J., Shin, C., Ho, J., & McCarty, P. L. (2019). A comparative pilot-scale evaluation of gas-sparged and granular activated carbon fluidized anaerobic membrane bioreactors for domestic wastewater treatment. Bioresource Technology, 288, 120949.

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Ji, J., Chen, Y., Hu, Y., Ohtsu, A., Ni, J., Li, Y., Sakuma, S., Hojo, T., Chen, R., & Li, Y.-Y. (2021). One-year operation of a 20-L submerged anaerobic membrane bioreactor for real domestic wastewater treatment at room temperature: Pursuing the optimal HRT and sustainable flux. Science of the Total Environment, 775, 145799.

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Meng, F., Chae, S. R., Drews, A., Kraume, M., Shin, H. S., & Yang, F. (2009). Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material. Water Research, 43(6), 1489ā€“1512.

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Meng, F., Zhang, S., Oh, Y., Zhou, Z., Shin, H.-S., & Chae, S.-R. (2017). Fouling in membrane bioreactors: An updated review. Water Research, 114, 151ā€“180.

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Jeison, D., & van Lier, J. B. (2007). Cake formation and consolidation: Main factors governing the applicable flux in anaerobic submerged membrane bioreactors (AnSMBR) treating acidified wastewaters. Separation and Purification Technology, 56(1), 71ā€“78.

    ArticleĀ  CASĀ  Google ScholarĀ 

  22. Gao, W. J., Lin, H. J., Leung, K. T., Schraft, H., & Liao, B. Q. (2011). Structure of cake layer in a submerged anaerobic membrane bioreactor. Journal of Membrane Science, 374, 110ā€“120.

    ArticleĀ  CASĀ  Google ScholarĀ 

  23. Hu, Y., Wang, X. C., Yu, Z., Ngo, H. H., Sun, Q., & Zhang, Q. (2016). New insight into fouling behavior and foulants accumulation property of cake sludge in a full-scale membrane bioreactor. Journal of Membrane Science, 150, 10ā€“17.

    ArticleĀ  Google ScholarĀ 

  24. Jeison, D., & van Lier, J. B. (2008). Anaerobic wastewater treatment and membrane filtration: A one night stand or a sustainable relationship? Water Science Technology, 57(4), 527ā€“532.

    ArticleĀ  CASĀ  Google ScholarĀ 

  25. Shin, C., & Bae, J. (2018). Current status of the pilot-scale anaerobic membrane bioreactor treatments of domestic wastewaters: A critical review. Bioresource Technology, 247, 1038ā€“1046.

    ArticleĀ  CASĀ  Google ScholarĀ 

  26. Vinardell, S., Astals, S., Peces, M., Cardete, M. A., Fernandez, I., Mata-Alvarez, J., & Dosta, J. (2020). Advances in anaerobic membrane bioreactor technology for municipal wastewater treatment: A 2020 updated review. Renewable and Sustainable Energy Reviews, 130, 109936.

    ArticleĀ  CASĀ  Google ScholarĀ 

  27. Anjum, F., Khan, I. M., Kim, J., Aslam, M., Blandin, G., Heran, M., & Lesage, G. (2021). Trends and progress in AnMBR for domestic wastewater treatment and their impacts on process efficiency and membrane fouling. Environmental Technology & Innovation, 21, 101204.

    ArticleĀ  CASĀ  Google ScholarĀ 

  28. Ersahin, M. E., Ozgun, H., Dereli, R. K., Ozturk, I., Roest, K., & van Lier, J. B. (2012). A review on dynamic membrane filtration: Materials, applications and future perspectives. Bioresource Technology, 122, 196ā€“206.

    ArticleĀ  CASĀ  Google ScholarĀ 

  29. Ersahin, M. E., Ozgun, H., Tao, Y., & van Lier, J. B. (2014). Applicability of dynamic membrane technology in anaerobic membrane bioreactors. Water Research, 48, 420ā€“429.

    ArticleĀ  CASĀ  Google ScholarĀ 

  30. Zhang, X., Wang, Z., Wu, Z., Lu, F., Tong, J., & Zang, L. (2010). Formation of dynamic membrane in an anaerobic membrane bioreactor for municipal wastewater treatment. Chemical Engineering Journal, 165, 175ā€“183.

    ArticleĀ  CASĀ  Google ScholarĀ 

  31. Ersahin, M. E., Tao, Y., Ozgun, H., Spanjers, H., & van Lier, J. B. (2016). Characteristics and role of dynamic membrane layer in anaerobic membrane bioreactors. Biotechnology and Bioengineering, 113, 761ā€“771.

    ArticleĀ  CASĀ  Google ScholarĀ 

  32. Hu, Y., Wang, X. C., Tian, W., Ngo, H. H., & Chen, R. (2016). Towards stable operation of a dynamic membrane bioreactor (DMBR): Operational process, behavior and retention effect of dynamic membrane. Journal of Membrane Science, 498, 20ā€“29.

    ArticleĀ  CASĀ  Google ScholarĀ 

  33. Jeison, D., Diaz, I., & van Lier, J. B. (2008). Anaerobic membrane bioreactors: Are membranes really necessary? Electronic Journal of Biotechnology, 11(4), 1ā€“7.

    ArticleĀ  Google ScholarĀ 

  34. Zhang, X., Wang, Z., Wu, Z., Wei, T., Lu, F., Tong, J., & Mai, S. (2011). Membrane fouling in an anaerobic dynamic membrane bioreactor (AnDMBR) for municipal wastewater treatment: Characteristics of membrane foulants and bulk sludge. Process Biochemistry, 46, 1538ā€“1544.

    ArticleĀ  CASĀ  Google ScholarĀ 

  35. Ma, J., Wang, Z., Xu, Y., Wang, Q., Wu, Z., & Grasmick, A. (2013). Organic matter recovery from municipal wastewater by using dynamic membrane separation process. Chemical Engineering Journal, 219, 190ā€“199.

    Google ScholarĀ 

  36. Quek, P. J., Yeap, T. S., & Ng, H. Y. (2017). Applicability of upflow anaerobic sludge blanket and dynamic membrane-coupled process for the treatment of municipal wastewater. Environmental Biotechnology, 101, 6531ā€“6540.

    ArticleĀ  CASĀ  Google ScholarĀ 

  37. Hu, Y., Yang, Y., Yu, S., Wang, X. C., & Tang, J. (2018). Psychrophilic anaerobic dynamic membrane bioreactor for domestic wastewater treatment: Effects of organic loading and sludge recycling. Bioresource Technology, 270, 62ā€“69.

    ArticleĀ  CASĀ  Google ScholarĀ 

  38. Yang, Y., Zang, Y., Hu, Y., Wang, X. C., & Ngo, H. H. (2020). Upflow anaerobic dynamic membrane bioreactor (AnDMBR) for wastewater treatment at room temperature and short HRTs: Process characteristics and practical applicability. Chemical Engineering Journal, 383, 123186.

    ArticleĀ  CASĀ  Google ScholarĀ 

  39. Alibardi, L., Bernava, N., Cossu, R., & Spagni, A. (2016). Anaerobic dynamic membrane bioreactor for wastewater treatment at ambient temperature. Chemical Engineering Journal, 284, 130ā€“138.

    ArticleĀ  CASĀ  Google ScholarĀ 

  40. Waktole, Y., Yan, B., Li, T., & Jegatheesan, V. (2020). Treatment of anthraquinone dye textile wastewater using anaerobic dynamic membrane bioreactor: Performance and microbial dynamics. Chemosphere, 238, 124539.

    ArticleĀ  Google ScholarĀ 

  41. Yurtsever, A., Başaran, E., UƧar, D., & Şahinkaya, E. (2021). Self-forming dynamic membrane bioreactor for textile industry wastewater treatment. Science of the Total Environment, 751, 141572.

    ArticleĀ  CASĀ  Google ScholarĀ 

  42. Xie, Z., Wang, Z., Wang, Q., Zhu, C., & Wu, Z. (2014). An anaerobic dynamic membrane bioreactor (AnDMBR) for landfill leachate treatment: Performance and microbial community identification. Bioresource Technology, 161, 29ā€“39.

    ArticleĀ  CASĀ  Google ScholarĀ 

  43. Liu, H., Wang, Y., Yin, B., Zhu, Y., Fu, B., & Liu, H. (2016). Improving volatile fatty acid yield from sludge anaerobic fermentation through self-forming dynamic membrane separation. Bioresource Technology, 218, 92ā€“100.

    ArticleĀ  CASĀ  Google ScholarĀ 

  44. Tang, J., Wang, X. C., Hu, Y., Ngo, H. H., & Li, Y. (2017). Dynamic membrane-assisted fermentation of food wastes for enhancing lactic acid production. Bioresource Technology, 234, 40ā€“47.

    ArticleĀ  CASĀ  Google ScholarĀ 

  45. Cayetano, R. D. A., Kim, G.-B., Park, J.-H., Kumar, G., & Kim, S.-H. (2020). Waste activated sludge treatment in an anaerobic dynamic membrane bioreactor at varying hydraulic retention time: Performance monitoring and microbial community analysis. International Journal of Energy Research, 44(15), 12485ā€“12495.

    ArticleĀ  CASĀ  Google ScholarĀ 

  46. Cayetano, R. D. A., Park, J.-H., & Kim, S.-H. (2020). Effect of shear velocity and feed concentration on the treatment of food waste in an anaerobic dynamic membrane Bioreactor: Performance Monitoring and microbial community analysis. Bioresource Technology, 296, 122301.

    ArticleĀ  CASĀ  Google ScholarĀ 

  47. Ersahin, M. E., Gimenez, J. B., Ozgun, H., Tao, Y., Spanjers, H., & van Lier, J. B. (2016). Gas-lift anaerobic dynamic membrane bioreactors for high strength synthetic wastewater treatment: Effect of biogas sparging velocity and HRT on treatment performance. Chemical Engineering Journal, 305, 46ā€“53.

    ArticleĀ  CASĀ  Google ScholarĀ 

  48. Wang, L., Liu, H., Zhang, W., Yu, T., Jin, Q., & Fu, B. (2018). Recovery of organic matters in wastewater by self-forming dynamic membrane bioreactor: Performance and membrane fouling. Chemosphere, 203, 123ā€“131.

    ArticleĀ  CASĀ  Google ScholarĀ 

  49. Alibardi, L., Cossu, R., Saleem, M., & Spagni, A. (2014). Development and permeability of a dynamic membrane for anaerobic wastewater treatment. Bioresource Technology, 161, 236ā€“244.

    ArticleĀ  CASĀ  Google ScholarĀ 

  50. Fan, B., & Huang, X. (2002). Characteristics of a self-forming dynamic membrane coupled with a bioreactor for municipal wastewater treatment. Environmental Science Technology, 36, 5245ā€“5251.

    ArticleĀ  CASĀ  Google ScholarĀ 

  51. Saleem, M., Alibardi, L., Lavagnolo, M. C., Cossu, R., & Spagni, A. (2016). Effect of filtration flux on the development and operation of a dynamic membrane for anaerobic wastewater treatment. Journal of Environmental Management, 180, 459ā€“465.

    ArticleĀ  CASĀ  Google ScholarĀ 

  52. Ersahin, M. E., Ozgun, H., & van Lier, J. B. (2013). Effect of support material properties on dynamic membrane filtration performance. Separation Science and Technology, 48(15), 2263ā€“2269.

    ArticleĀ  CASĀ  Google ScholarĀ 

  53. Siddiqui, M. A., Dai, J., Guan, D., & Chen, G. (2019). Exploration of the formation of self-forming dynamic membrane in an upflow anaerobic sludge blanket reactor. Separation and Purification Technology, 212, 757ā€“766.

    ArticleĀ  Google ScholarĀ 

  54. Siddiqui, M. A., Biswal, B. K., Saleem, M., Guan, D., Iqbal, A., Wu, D., Khanal, S. K., & Chen, G. (2021). Anaerobic self-forming dynamic membrane bioreactors (AnSFDMBRs) for wastewater treatmentā€”Recent advances, process optimization and perspectives. Bioresurce Technology, 332, 125101.

    ArticleĀ  CASĀ  Google ScholarĀ 

  55. Kiso, Y., Jung, Y. J., Ichinari, T., Park, M., Kitao, T., Nishimura, K., & Min, K. S. (2000). Wastewater treatment performance of a filtration bio-reactor equipped with a mesh as a filter material. Water Research, 34(17), 4143ā€“4150.

    ArticleĀ  CASĀ  Google ScholarĀ 

  56. Hu, Y., Wang, X. C., Ngo, H. H., Sun, Q., & Yang, Y. (2018). Anaerobic dynamic membrane bioreactor (AnDMBR) for wastewater treatment: A review. Bioresource Technology, 247, 1107ā€“1118.

    ArticleĀ  CASĀ  Google ScholarĀ 

  57. Al-Asheh, S., Bagheri, M., & Aidan, A. (2021). Membrane bioreactor for wastewater treatment: A review. Case Studies in Chemical and Environmental Engineering, 4, 100109.

    ArticleĀ  CASĀ  Google ScholarĀ 

  58. Le-Clech, P., Jefferson, B., & Judd, S. J. (2005). A comparison of submerged and sidestream tubular membrane bioreactor configurations. Desalination, 173, 113ā€“122.

    ArticleĀ  CASĀ  Google ScholarĀ 

  59. Judd, S., & Turan, F. (2018). Sidestream vs immersed membrane bioreactors: A cost analysis. Proceedings of the Water Environment Federation, 2018(10), 3722ā€“3733.

    ArticleĀ  Google ScholarĀ 

  60. Ersahin, M. E., Tao, Y., Ozgun, H., Gimenez, J. B., Spanjers, H., & van Lier, J. B. (2017). Impact of anaerobic dynamic membrane bioreactor configuration on treatment and filterability performance. Journal of Membrane Science, 526, 387ā€“394.

    ArticleĀ  CASĀ  Google ScholarĀ 

  61. Sun, F., Zhang, N., Li, F., Wang, X., Zhang, J., Song, L., & Liang, S. (2018). Dynamic analysis of self-forming dynamic membrane (SFDM) filtration in submerged anaerobic bioreactor: Performance, characteristic, and mechanism. Bioresource Technology, 270, 383ā€“390.

    ArticleĀ  CASĀ  Google ScholarĀ 

  62. Manariotis, I. D., & Grigoropoulos, S. G. (2002). Low strength wastewater treatment using an anaerobic baffled reactor. Water Environment Research, 74, 170ā€“176.

    ArticleĀ  CASĀ  Google ScholarĀ 

  63. Barber, W. P., & Stuckey, D. C. (1999). The use of the anaerobic baffled reactor (ABR) for wastewater treatment: A review. Water Research, 33, 1559ā€“1578.

    ArticleĀ  CASĀ  Google ScholarĀ 

  64. Chinwetkitvanich, S., & Ruchiraset, A. (2017). The anaerobic baffled reactor (ABR): Performance and microbial population at various COD loading rates. International Journal of Geomate, 12(33), 78ā€“84.

    Google ScholarĀ 

  65. Dama, P., Bell, J., Foxon, K. M., Brouckaert, C. J., Huang, T., Buckley, C. A., Naidoo, V., & Stuckey, D. (2002). Pilot-scale study of an anaerobic baffled reactor for the treatment of domestic wastewater. Water Science & Technology, 46(9), 263ā€“270.

    ArticleĀ  CASĀ  Google ScholarĀ 

  66. Wang, J., Huang, Y., & Zhao, X. (2004). Performance and characteristics of an anaerobic baffled reactor. Bioresource Technology, 93, 205ā€“208.

    ArticleĀ  CASĀ  Google ScholarĀ 

  67. Zwain, H. M., Zaman, N. Q., Aziz, H. A., & Dahlan, I. (2014). A novel design concept of modified anaerobic inclining-baffled reactor (MAI-BR) for wastewater treatment application. Journal of the Institute of Industrial Applications Engineers, 2(3), 85ā€“90.

    ArticleĀ  Google ScholarĀ 

  68. Foxon, K. M., Pillay, S., Lalbahadur, T., Rodda, N., Holder, F., & Buckley, C. A. (2004). The anaerobic baffled reactor (ABR): An appropriate technology for on-site sanitation. WaterSA, 30, 44ā€“50.

    Google ScholarĀ 

  69. Bodkhe, S. Y. (2009). A modified anaerobic baffled reactor for municipal wastewater treatment. Journal of Environmental Management, 90(8), 2488ā€“2493.

    ArticleĀ  CASĀ  Google ScholarĀ 

  70. Abbasi, H. N., Lu, X., & Xu, F. (2017). Seasonal performance and characteristic of ABR for low strength wastewater. Applied Ecology and Environmental Research, 15, 263ā€“273.

    ArticleĀ  Google ScholarĀ 

  71. Sung, H.-N., Katsou, E., Statiris, E., Anguilano, L., & Simos, M. (2019). Operation of a modified anaerobic baffled reactor coupled with a membrane bioreactor for the treatment of municipal wastewater in Taiwan. Environmental Technology, 40(10), 1233ā€“1238.

    ArticleĀ  CASĀ  Google ScholarĀ 

  72. Wang, W., Wang, S., Ren, X., Hu, Z., & Yuan, S. (2017). Rapid establishment of phenol- and quinoline-degrading consortia driven by the scoured cake layer in an anaerobic baffled ceramic membrane bioreactor. Environmental Science and Pollution Research, 24, 26125ā€“26135.

    ArticleĀ  CASĀ  Google ScholarĀ 

  73. Wu, M., Liu, J., Gao, B., & Sillanpaa, M. (2021). Anaerobic offsite Fe2+ releasing for electrocoagulation in ABMBR: Membrane fouling mitigation, nutrients removal and anodes protection. Journal of Water Process Engineering, 39, 101706.

    ArticleĀ  Google ScholarĀ 

  74. Amouamouha, M., & Gholikandi, G. B. (2018). Assessment of anaerobic nanocomposite membrane bioreactor efficiency intensified by biogas backwash. Chemical Engineering and Processingā€”Process Intensification, 131, 51ā€“58.

    Google ScholarĀ 

  75. An, Y., Wang, Z., Wu, Z., Yang, W., & Zhou, Q. (2009). Characterization of membrane foulants in an anaerobic non-woven fabric membrane bioreactor for municipal wastewater treatment. Chemical Engineering Journal, 155, 709ā€“715.

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgements

This study is originated from the project of FBA-2021-4556 funded by Yıldız Technical University Scientific Research Projects CoordinationĀ Unit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to EyĆ¼p Debik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Debik, E., Manav-Demir, N., Celik, E., Ihtiyaroglu, A. (2023). Anaerobic Dynamic Membrane Bioreactors for the Domestic Wastewater Treatment. In: Debik, E., Bahadir, M., Haarstrick, A. (eds) Wastewater Management and Technologies. Water and Wastewater Management. Springer, Cham. https://doi.org/10.1007/978-3-031-36298-9_3

Download citation

Publish with us

Policies and ethics