Skip to main content

Horizontal Subsurface Flow Constructed Wetlands in Arid and Semi-Arid Areas—A Review

  • Chapter
  • First Online:
Wastewater Management and Technologies

Abstract

Horizontal subsurface flow constructed wetlands (HSSFCWs) were first developed by Seidel in the early 1960s and upgraded by Reinhold Kickuth as the Root Zone Method in the late 1960s and early 1970s. These constructed wetlands (CWs) are used in wastewater treatment and replicate the natural processes of pollution removal. HSSFCWs employ substrate bed planted with wetland plants, and the wastewater maintained below the bed surface flows horizontally from the inlet of the system to its outlet. They are proposed as a sustainable solution instead of other systems such as membrane bioreactors or sequencing batch reactors mainly because of their minimal energy consumption and relatively low construction and operational costs. Indeed, they are very practical for wastewater treatment in decentralized, rural, and remote areas, where conventional treatment is not possible and limited. Nevertheless, they are very effective in removing organic and microbial pollutants. However, for the proper functioning of these filters, some parameters may affect their processing efficiency such as type of vegetations, composition of the substrate, retention time, or temperature. This review focuses on the influence of arid and semi-arid climatic conditions on the effectiveness of the removal of different contaminants in HSSFCWs. Various studies of wastewater treatment using HSSFCWs under these specific climatic conditions, particularly in Morocco, Algeria, Tunisia, and Egypt, will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salama, Y., Chennaoui, M., Sylla, A., Mountadar, M., Rihani, M., & Assobhei, O. (2014). Review of wastewater treatment and reuse in the Morocco: Aspects and perspectives. 17.

    Google Scholar 

  2. Almuktar, S. A. A. A. N., Abed, S. N., & Scholz, M. (2018). Wetlands for wastewater treatment and subsequent recycling of treated effluent: A review. Environmental Science and Pollution Research, 25(24), 23595–23623.

    Article  CAS  Google Scholar 

  3. Kadlec, R. H., & Wallace, S. D. (2009). Treatment wetlands (2nd ed). CRC Press.

    Google Scholar 

  4. Abou-Elela, S. I., Golinielli, G., Abou-Taleb, E. M., & Hellal, M. S. (2013). Municipal wastewater treatment in horizontal and vertical flows constructed wetlands. Ecological Engineering, 61, 460–468.

    Article  Google Scholar 

  5. Economopoulou, M. A., & Tsihrintzis, V. A. (2004). Design methodology of free water surface constructed wetlands. 26.

    Google Scholar 

  6. Vymazal, J., Brix, H., Cooper, P., Haberl, R., Perfler, R., & Laber, J. (1998). Removal mechanisms and types of constructed wetlands. 17–66.

    Google Scholar 

  7. Vymazal, J. (2010). Constructed wetlands for wastewater treatment. Water, 2(3), 530–549.

    Article  CAS  Google Scholar 

  8. Vymazal, J., & Kröpfelová, L. (2008). Wastewater treatment in constructed wetlands with horizontal sub-surface flow (Vol. 14). Springer science & business media.

    Google Scholar 

  9. Vymazal, J. (2009). The use constructed wetlands with horizontal sub-surface flow for various types of wastewater. Ecological Engineering, 35(1), 1–17. https://doi.org/10.1016/j.ecoleng.2008.08.016

    Article  Google Scholar 

  10. Calheiros, C. S. C., Rangel, A. O. S. S., & Castro, P. M. L. (2014). Constructed wetlands for tannery wastewater treatment in Portugal: Ten years of experience. International Journal of Phytoremediation, 16(9), 859–870. https://doi.org/10.1080/15226514.2013.798622

    Article  Google Scholar 

  11. Bakhshoodeh, R., Alavi, N., Majlesi, M., & Paydary, P. (2017). Compost leachate treatment by a pilot-scale subsurface horizontal flow constructed wetland. Ecological Engineering, 105, 7–14. https://doi.org/10.1016/j.ecoleng.2017.04.058

    Article  Google Scholar 

  12. Wang, M., Zhang, D. Q., Dong, J. W., & Tan, S. K. (2017). Constructed wetlands for wastewater treatment in cold climate—A review. Journal of Environmental Sciences, 57, 293–311. https://doi.org/10.1016/j.jes.2016.12.019

    Article  CAS  Google Scholar 

  13. Kadlec, R. H., & Knight, R. L. (1996). Treatment wetlands. Lewis Publisher CRC press, Florida.

    Google Scholar 

  14. Reed, S. C., Crites, R. W., & Middlebrooks, E. J. (1995). Natural systems for waste management and treatment (2nd ed.). McGraw Hill.

    Google Scholar 

  15. Sundaravadivel, M., & Vigneswaran, S. (2001). Constructed wetlands for wastewater treatment. Critical Reviews in Environmental Science and Technology, 31(4), 351–409.

    Article  CAS  Google Scholar 

  16. Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. Science of The Total Environment, 380(1–3), 48–65. https://doi.org/10.1016/j.scitotenv.2006.09.014

    Article  CAS  Google Scholar 

  17. Sani, A., Scholz, M., & Bouillon, L. (2013). Seasonal assessment of experimental vertical-flow constructed wetlands treating domestic wastewater. Bioresource Technology, 147, 585–596. https://doi.org/10.1016/j.biortech.2013.08.076

    Article  CAS  Google Scholar 

  18. Laaffat, J., Ouazzani, N., & Mandi, L. (2015). The evaluation of potential purification of a horizontal subsurface flow constructed wetland treating greywater in semi-arid environment. Process Safety and Environmental Protection, 95, 86–92.

    Article  CAS  Google Scholar 

  19. Vymazal, J. (2005). Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecological Engineering, 25(5), 478–490. https://doi.org/10.1016/j.ecoleng.2005.07.010

    Article  Google Scholar 

  20. Vanier, S. M., & Dahab, M. F. (2001). Start-Up performance of a subsurface-flow constructed wetland for domestic wastewater treatment. Environmental Technology, 22(5), 587–596. https://doi.org/10.1080/09593332208618260

    Article  CAS  Google Scholar 

  21. Kadlec, R. H. (2003). Pond and wetland treatment. Water Science and Technology, 48(5), 1–8. https://doi.org/10.2166/wst.2003.0266

    Article  CAS  Google Scholar 

  22. Garfí, M., Pedescoll, A., Bécares, E., Hijosa-Valsero, M., Sidrach-Cardona, R., & García, J. (2012). Effect of climatic conditions, season and wastewater quality on contaminant removal efficiency of two experimental constructed wetlands in different regions of Spain. Science of The Total Environment, 437, 61–67. https://doi.org/10.1016/j.scitotenv.2012.07.087

    Article  CAS  Google Scholar 

  23. Vera, I., Verdejo, N., Chávez, W., Jorquera, C., & Olave, J. (2016). Influence of hydraulic retention time and plant species on performance of mesocosm subsurface constructed wetlands during municipal wastewater treatment in super-arid areas. Journal of Environmental Science and Health, Part A, 51(2), 105–113. https://doi.org/10.1080/10934529.2015.1087732

    Article  CAS  Google Scholar 

  24. Zidan, A. R. A., El-Gamal, M. M., Rashed, A. A., & El-Hady Eid, M. A. A. (2015). Wastewater treatment in horizontal subsurface flow constructed wetlands using different media (setup stage). Water Science, 29(1), 26–35. https://doi.org/10.1016/j.wsj.2015.02.003

    Article  Google Scholar 

  25. Kouki, S., M’hiri, F., Saidi, N., Belaïd, S., & Hassen, A. (2009). Performances of a constructed wetland treating domestic wastewaters during a macrophytes life cycle. Desalination, 246(1–3), 452–467.https://doi.org/10.1016/j.desal.2008.03.067

  26. Albalawneh, A., Chang, T. K., Chou, C. S., & Naoum, S. (2016). Efficiency of a horizontal sub-surface flow constructed wetland treatment system in an arid area. Water, 8(2), 51. https://doi.org/10.3390/w8020051

    Article  CAS  Google Scholar 

  27. Fonkou, T., Fonteh, M. F., Djousse Kanouo, M., & Akoa, A. (2010). Performances des filtres plantes de Echinochloa pyramidalis dans l’épuration des eaux usées de distillerie en Afrique subsaharienne. Tropicultura, 69–76.

    Google Scholar 

  28. Mandi, L., Bouhoum, K., & Ouazzani, N. (1998). Application of constructed wetlands for domestic wastewater treatment in an arid climate. Water Science and Technology, 38(1), 379–387. https://doi.org/10.1016/S0273-1223(98)80004-8

    Article  CAS  Google Scholar 

  29. El Hamouri, B., Nazih, J., & Lahjouj, J. (2007). Subsurface-horizontal flow constructed wetland for sewage treatment under Moroccan climate conditions. Desalination, 215(1–3), 153–158. https://doi.org/10.1016/j.desal.2006.11.018

    Article  CAS  Google Scholar 

  30. Saggaï, M. M., Ainouche, A., Nelson, M., Cattin, F., & El Amrani, A. (2017). Long-term investigation of constructed wetland wastewater treatment and reuse: Selection of adapted plant species for metaremediation. Journal of Environmental Management, 201, 120–128. https://doi.org/10.1016/j.jenvman.2017.06.040

    Article  CAS  Google Scholar 

  31. Langergraber, G. (2005). The role of plant uptake on the removal of organic matter and nutrients in subsurface flow constructed wetlands: A simulation study. Water Science and Technology, 51(9), 213–223. https://doi.org/10.2166/wst.2005.0322

    Article  CAS  Google Scholar 

  32. Bensmina-Mimeche, L., Debabeche, M., Seghairi, N., & Benameur, N. (2014). Capacite de filtres plantes de macrophytes pour l’epuration des eaux usees dans le climat semi-aride. Courrier Du Savoir Scientifique et Technologique, 17.

    Google Scholar 

  33. Milani, M., & Toscano, A. (2013). Evapotranspiration from pilot-scale constructed wetlands planted with Phragmites australis in a Mediterranean environment. Journal of Environmental Science and Health, Part A, 48(5), 568–580. https://doi.org/10.1080/10934529.2013.730457

    Article  CAS  Google Scholar 

  34. Karathanasis, A. D., Potter, C. L., & Coyne, M. S. (2003). Vegetation effects on fecal bacteria, BOD, and suspended solid removal in constructed wetlands treating domestic wastewater. Ecological Engineering, 20(2), 157–169. https://doi.org/10.1016/S0925-8574(03)00011-9

    Article  Google Scholar 

  35. Elfanssi, S., Ouazzani, N., Latrach, L., Hejjaj, A., & Mandi, L. (2018). Phytoremediation of domestic wastewater using a hybrid constructed wetland in mountainous rural area. International Journal of Phytoremediation, 20(1), 75–87.

    Article  CAS  Google Scholar 

  36. Konnerup, D., Koottatep, T., & Brix, H. (2009). Treatment of domestic wastewater in tropical, subsurface flow constructed wetlands planted with Canna and Heliconia. Ecological Engineering, 35(2), 248–257. https://doi.org/10.1016/j.ecoleng.2008.04.018

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souad El Hajjaji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benbouzid, M., Al-Jadabi, N., Hajjaji, S.E., Labjar, N., Dhiba, D., Dahchour, A. (2023). Horizontal Subsurface Flow Constructed Wetlands in Arid and Semi-Arid Areas—A Review. In: Debik, E., Bahadir, M., Haarstrick, A. (eds) Wastewater Management and Technologies. Water and Wastewater Management. Springer, Cham. https://doi.org/10.1007/978-3-031-36298-9_2

Download citation

Publish with us

Policies and ethics