Skip to main content

Sanitation Context and Technological Challenges to Municipal Wastewater Management in Africa

  • Chapter
  • First Online:
Wastewater Management and Technologies

Part of the book series: Water and Wastewater Management ((WWWE))

  • 165 Accesses

Abstract

The debate on the municipal wastewater problem in the developing world is not new. However, the inaction on the part of governments or municipal urgencies is worrying in the face of persistent health burden arising from release of partially treated or untreated wastewater into the environment. The inaction derives in part from high costs and expertise constraints that are needed to set up and operate advanced wastewater treatment technologies. In part, the inaction even in the face of mounting threat to public health may be due to a deep-rooted perception that wastewater is not a resource or is inherently bad and must thus be disposed. Consequently, investment in safe disposal or in technologies for recycling and reuse of wastes remains low. In addition, population growth in many municipalities continues to increase and so is the production of high volumes of wastewater and other wastes. Furthermore, the situation is exacerbated by emerging pollutants of concern that cannot be removed from wastewater by existing technologies. Technologies that can overcome these constraints and challenges are needed for sustainable wastewater treatment in Africa, a continent that is suffering from water-stress and high burden of sanitation-related diseases. Existing evidence shows that chemically enhanced primary treatment (CEPT) is an ideal first step technology for wastewater treatment in the developing world because of its low cost, efficiency, and ease of implementation. This chapter presents the complex sanitation context in Africa. It summarizes the performance of commonly used wastewater treatment systems. In addition, it revisits the proposition that CEPT is an efficient, low cost and adaptable wastewater treatment technology that offers great promise to address wastewater treatment challenges facing municipalities in the developing world including Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. UNDESA. (2019). Millenium development goals report 2009.

    Google Scholar 

  2. WHO. (2014). Preventing diarrhoea through better water, sanitation and hygiene: Exposures and impacts in low- and middle-income countries.

    Google Scholar 

  3. Jones, E. R., van Vliet, M. T. H., Qadir, M., & Bierkens, M. F. P. (2021). Country-level and gridded estimates of wastewater production, collection, treatment and reuse. Earth System Science Data, 13, 237–254.

    Article  Google Scholar 

  4. Pruden, A., Larsson, D. G., Amézquita, A., Collignon, P., Brandt, K. K., Graham, D. W., Lazorchak, J. M., Suzuki, S., Silley, P., Snape, J. R., Topp, E., Zhang, T., & Zhu, Y. G. (2013). Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environmental Health Perspectives, 121, 878–885.

    Article  Google Scholar 

  5. UNHSP. (2008). Global atlas of excreta, wastewater sludge, and biosolids management: Moving forward the sustainable and welcome uses of a global resource. World Health Organization.

    Google Scholar 

  6. Global Resource Information Database. Sanitation and wastewater atlas of Africa.

    Google Scholar 

  7. GBD. (2016). Mortality collaborators, 2017. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet, 390, 1151–1210.

    Google Scholar 

  8. Prüss-Ustün, A., Bartram, J., Clasen, T., Colford, J. M. J., Cumming, O., Curtis, V., Bonjour, S., Dangour, A. D., De France, J., Fewtrell, L., Freeman, M. C., Gordon, B., Hunter, P. R., Johnston, R. B., Mathers, C., Mäusezahl, D., Medlicott, K., Neira, M., Stocks, M., … Cairncross, S. (2014). Burden of disease from inadequate water, sanitation and hygiene in low- and middle-income settings: A retrospective analysis of data from 145 countries. Tropical Medicine and International Health, 19, 894–905.

    Article  Google Scholar 

  9. United Nations Environment Programme. (2010). Africa Water Atlas.

    Google Scholar 

  10. Asmall, T., Abrams, A., Röösli, M., Cissé, G., Carden, K., Dalvie, M. A. (2021). The adverse health effects associated with drought in Africa. Science of the Total Environment, 793.

    Google Scholar 

  11. Hristov, J., Barreiro-Hurle, J., Salputra, G., Blanco, M., Witzke, P. (2021). Reuse of treated water in European agriculture: Potential to address water scarcity under climate change. Agricultural Water Management, 251.

    Google Scholar 

  12. WWAP (United Nations World Water Assessment Programme). (2017). The United Nations World Water Development Report 2017.

    Google Scholar 

  13. Jiménez, B., Drechsel, P., Koné, D., Bahri, A. (2010). Wastewater , sludge and excreta use in developing countries : An overview. In P. Drechsel, C. A. Scott, L. Raschid-Sally, M. Redwood, & A. Bahri (Eds.), Wastewater, irrigation and health: Assessing and mitigating risk in low-income countries (pp. 3–27). International Water Management.

    Google Scholar 

  14. WWAP (United Nations World Water Assessment Programme). (2017). Wastewater: The untapped resource.

    Google Scholar 

  15. Mekonnen, A., Leta, S., & Njau, K. N. (2015). Wastewater treatment performance efficiency of constructed wetlands in African countries: A review. Water Science and Technology, 71, 1–8.

    Article  CAS  Google Scholar 

  16. Hickey, A., Arnscheidt, J., Joyce, E., O'Toole, J., Galvin, G., O’ Callaghan, M., Conroy, K., Killian, D., Shryane, T., Hughes, F., Walsh, K., Kavanagh, E. (2018). An assessment of the performance of municipal constructed wetlands in Ireland. Journal of Environmental Management, 210, 263–272.

    Google Scholar 

  17. Kayombo, S., Ladegaard, N. (2004). Waste stabilization ponds and constructed wetlands design manual. 1–59 Preprint at (2004).

    Google Scholar 

  18. Edokpayi, J. N., Odiyo, J. O., Popoola, O. E., & Msagati, T. A. M. (2021). Evaluation of contaminants removal by waste stabilization ponds : A case study of Siloam WSPs in Vhembe District. South Africa. Heliyon, 7, e06207.

    CAS  Google Scholar 

  19. Libhaber, M., Oroczo-Jaramillo, A. (2012). Sustainable treatment and reuse of municipal wastewater. IWA Publishing.

    Google Scholar 

  20. Neupane, D. R., Riffat, R., Murthy, S. N., Peric, M. R., & Wilson, T. E. (2008). Influence of source characteristics, chemicals, and flocculation on chemically enhanced primary treatment. Water and Environmental Research, 80, 331–338.

    Article  CAS  Google Scholar 

  21. Jimenez, B., & Chavez, A. (1998). Removal of helminth eggs in an advanced primary treatment with sludge blanket. Environmental Technology, 19, 1061–1071.

    Article  CAS  Google Scholar 

  22. Johnson, P. D., Girinathannair, P., Ohlinger, K. N., Ritchie, S., Teuber, L., & Kirby, J. (1998). Enhanced removal of heavy metals in primary treatment using coagulation and flocculation. Water (Basel), 80, 472–479.

    Google Scholar 

  23. Haydar, S., & Aziz, J. A. (2009). Characterization and treatability studies of tannery wastewater using chemically enhanced primary treatment (CEPT)-A case study of Saddiq Leather Works. Journal of Hazardous Materials, 163, 1076–1083.

    Article  CAS  Google Scholar 

  24. Morrissey, S. P., Harleman, D. R. F. (1992). Retrofitting conventional primary treatment plants for chemically enhanced primary treatment in the USA. In R. Klute, & H. Hahn (Eds.), Chemical water and wastewater treatment II: Proceedings of the 5th gothenburg symposium (pp. 401–416). Springer.

    Google Scholar 

  25. Chagnon, F., Harleman, D. R. F. (1992). An introduction to chemically enhanced primary treatment efficiency of CEPT. 1–5.

    Google Scholar 

  26. Cabral, C., Chagnon, F., Gotovac, D., Harleman, D. R. F., Murcott, S. (1999). Design of a chemically enhanced wastewater treatment lagoon in Brazil.

    Google Scholar 

  27. Jimenez, B., Maya, C., & Galvan, M. (2007). Helminth ova removal from wastewater for agriculture and aquaculture reuse. Water Science and Technology, 56, 43–51.

    CAS  Google Scholar 

  28. Murcott, S., Dunn, A., Harleman, D. R. F. (1996). Chemically enhanced wastewater treatment for agricultural reuse in Mexico. International Association of Water Quality: Biennial Conference.

    Google Scholar 

  29. Landa, H., Capella, A., & Jimenez, B. (1997). Particle size distribution in an effluent from advanced primary treatment and its removal during filtration. Water Science and Technology, 36, 159–165.

    Article  CAS  Google Scholar 

  30. Teh, C. Y., Budiman, P. M., Shak, K. P. Y., & Wu, T. Y. (2016). Recent advancement of coagulation-flocculation and its application in wastewater treatment. Industrial and Engineering Chemistry Research, 55, 4363–4389.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Ogola Onyango .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Onyango, P.O. (2023). Sanitation Context and Technological Challenges to Municipal Wastewater Management in Africa. In: Debik, E., Bahadir, M., Haarstrick, A. (eds) Wastewater Management and Technologies. Water and Wastewater Management. Springer, Cham. https://doi.org/10.1007/978-3-031-36298-9_13

Download citation

Publish with us

Policies and ethics