Skip to main content

Magnetically Separable and Reusable Mag-Mg/Al Layered Double Hydroxides for the Adsorption of Disperse Dyes of Navy Blue and Yellow F3G

  • Chapter
  • First Online:
Wastewater Management and Technologies

Part of the book series: Water and Wastewater Management ((WWWE))

  • 164 Accesses

Abstract

Dying of a polyester fabric by using a mixture of disperse dyes of navy blue and yellow F3G is now getting popular in Indonesia for the purpose of developing a military camouflage costume for anti-near infrared (NIR) detection device in jungle field. Since the efficiency of fabric dying is generally low, a considerable high concentration of navy blue and yellow F3G dyes will be released to wastewater, and they may give detrimental effect to the environment. To anticipate this undesired problem that may arise soon, a composite of magnetite and Mg/Al layered double hydroxides (Mag-Mg/Al LDHs) by a co-precipitation method was synthesized and then applied as adsorbent of navy blue and yellow F3G dyes in wastewater. Magnetite was incorporated onto Mg/Al LDHs for the purpose of facilitating an easy separation of the adsorbent from the adsorption system by simply using an external magnetic field. It was observed that pH 4.0 was the best acidity for the adsorption of navy blue and yellow F3G dyes, and hydrogen bonding played an important role. The adsorption kinetics of both dyes followed better the second order than the pseudo-first and pseudo-second orders with rate constants (k2) 52.20 and 44.40 (mol/L)−1 min−1 for navy blue and yellow F3G, respectively. Adsorption isotherm of both dyes fitted more closely to Langmuir than to Freundlich models with adsorption capacity 0.55 × 10−3 mol/g (146.30 mg/g) for navy blue and 0.39 × 10−3 mol/g (110 mg/g) for yellow F3G. Adsorption trial to a synthetic wastewater sample showed that the adsorption efficiency of Mag-Mg/Al LDHs increased from 30.86 to 76.63% with decreasing the concentration of the mixed dyes from 400 to 80 mg/L. These adsorption efficiencies were enhanced to approximately 1.27 times (39.11 to 97.76%) upon the use of a secondary adsorbent obtained by calcination of the used adsorbent at temperature 450 °C for 3 h.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alsantali, R. I., Raja, Q. A., Alzahrani, A. Y. A., Sadiq, A., Naeem, N., Mughal, E. U., Al-Rooqi, M. M., El Guesmi, N., Moussa, Z., & Ahmed, S. A. (2022). Miscellaneous azo dyes: A comprehensive review on recent advancements in biological and industrial applications. Dyes and pigments, 199, 110050.

    Article  CAS  Google Scholar 

  2. Khan, S. A., Hussain, D., & Khan, T. A. (2021). Recent advances in synthetic dyes. In L.J. Rather, A. Haji, & M. Shabbir (Eds.), Innovative and emerging technologies for textile dyeing and finishing (pp. 91–112). Scrivener Publishing LLC.

    Google Scholar 

  3. Sarina. (2022). 30 of the most well known synthetic fabrics and the synthetic fibers that make them. https://sewguide.com/synthetic-fabrics-fibers/. Accessed in 12 July 2022.

  4. Wu, X., Hui, K. N., Hui, K. S., Lee, S. K., Zhou, W., Chen, R., Hwang, D. H., Cho, Y. R., & Son, Y. G. (2012). Adsorption of basic yellow 87 from aqueous solution onto two different mesoporous adsorbents. Chemical Engineering Journal, 180, 91–98.

    Article  CAS  Google Scholar 

  5. Noureddine, B., Samir, Q., Ali, A., Abederrahman, N., & Yhya, A. (2008). Adsorption of disperse blue SBL dye by synthesized poorly crystalline hydroxyapatite. Journal of Environmental Science, 20, 1268–1272.

    Article  Google Scholar 

  6. Gerçel, Ö., Gerçel, H. F., Koparal, A. S., & Öğütveren, Ü. B. (2008). Removal of disperse dye from aqueous solution by novel adsorbent prepared from biomass plant material. Journal of Hazardous Materials, 160, 668–674.

    Article  Google Scholar 

  7. Joseph, J., Radhakrishnan, R. C., Johnson, J. K., Joy, S. P., & Thomas, J. (2020). Ion-exchange mediated removal of cationic dye-stuffs from water using ammonium phosphomolybdate. Materials Chemistry and Physics, 22, 122488.

    Article  Google Scholar 

  8. Yi, S., Sun, G., & Dai, F. (2018). Removal and separation of mixed ionic dyes by solvent extraction. Textile Research Journal, 88, 14–19.

    Article  Google Scholar 

  9. Tomar, R., Abdala, A. A., Chaudhary, R. G., & Singh, N. B. (2020). Photocatalytic degradation of dyes by nanomaterials. Materials Today: Proceedings, 29, 967–973.

    CAS  Google Scholar 

  10. Putro, J. N., Ju, Y.-H., Soetaredjo, F. E., Santoso, S. P., & Ismadji, S. (2021). Biosorption of dyes. In S. K. Sharma (Ed.), in Advances in green and sustainable chemistry, green chemistry and water remediation: Research and applications (pp. 99–133). Elsevier.

    Google Scholar 

  11. Santosa, S. J., Sudiono, S., & Wibawani, R. S. (2020). Solvent-free mechanochemically synthesized Zn layered hydroxide salts for the adsorption of naphtholate AS dye. Applied Surface Science, 506, 144930.

    Article  CAS  Google Scholar 

  12. Heraldy, E., Santosa, S. J., Triyono, T., & Wijaya, K. (2015). Anionic and cationic dyes removal from aqueous solutions by adsorption onto synthetic mg/al hydrotalcite-like compound. Indonesian Journal of Chemistry, 15, 234–241.

    Google Scholar 

  13. Santosa, S. J., & RahmatSudiono, Z. (2020). Adsorption characteristics of methylene blue on bagasse bottom ash. In J. C. Taylor (Ed.), in Advances in chemistry research (Vol. 61, pp. 237–260). Nova Science Publishers Inc.

    Google Scholar 

  14. Ikhsani, I. Y., Santosa, S. J., & Rusdiarso, B. (2016). Comparative study of Ni-Zn LHS and Mg-Al LDH adsorbents of navy blue and yellow F3G Dye. Indonesian Journal of Chemistry, 16, 36–44.

    Article  CAS  Google Scholar 

  15. Santosa, S. J., & Astuti, D. P. (2021). Reusable high performance of calcined Mg/Al hydrotalcite for the removal of navy blue and yellow F3G dyes. Chinese Journal of Chemical Engineering, 38, 247–254.

    Article  CAS  Google Scholar 

  16. Ardhayanti, L. I., & Santosa, S. J. (2016). Synthesis of magnetite-Mg/Al Hydrotalcite and its application as adsorbent for navy blue and yellow F3G dyes. Procedia Engineering, 148, 1380–1387.

    Article  CAS  Google Scholar 

  17. Santosa, S. J., & KunartiKarmanto, E. S. (2008). Synthesis and utilization of Mg/Al hydrotalcite for removing dissolved humic acid. Applied Surface Science, 254, 7612–7617.

    Article  CAS  Google Scholar 

  18. Santosa, S. J., Fitriani, D., Aprilita, N. H., & Rusdiarso, B. (2020). Gallic and salicylic acid-functionalized Mg/Al hydrotalcite as highly effective materials for reductive adsorption of AuCl4. Applied Surface Science, 507, 145115.

    Article  CAS  Google Scholar 

  19. El-kharrag, R., Amin, A., & Greish, Y. E. (2012). Low temperature synthesis of monolithic mesoporous magnetite nanoparticles. Ceramics International, 38, 627–634.

    Article  CAS  Google Scholar 

  20. Santosa, S. J., Kunarti, E. S., & Sudiono, S. (2010). Journal Ion Exchange, 21, 272–277.

    Google Scholar 

  21. Yang, K., Yan, L.-G., Yang, Y.-M., Yu, S.-J., Shan, R.-R., Yu, H.-Q., Zhu, B.-C., & Du, B. (2014). Adsorptive removal of phosphate by Mg-Al and Zn-Al layered double hydroxides: Kinetics, isotherms and mechanisms. Separation and Purification Technology, 124, 36–42.

    Article  CAS  Google Scholar 

  22. Mahjoubi, F. Z., Khalidi, A., Abdennouri, M., & Barka, N. (2015). Zn–Al layered double hydroxides intercalated with carbonate, nitrate, chloride and sulfate ions: Synthesis, characterization and dyes removal properties. Journal of Taibah University of Science, 11, 90–100.

    Article  Google Scholar 

  23. Wan, D., Liu, H., Liu, R., Qu, J., Li, S., & Zhang, J. (2012). Adsorption of nitrate and nitrite from aqueous solution onto calcined (Mg/Al) hydrotalcite of different Mg/Al ratio. Chemical Engineering Journal, 195–196, 241–247.

    Article  Google Scholar 

  24. Kloprogge, J. T., Wharton, D., Hickey, L., & Frost, R. L. (2002). Infrared and Raman study of interlayer anions CO32-, NO3-, SO42- and ClO4- in Mg/Al hydrotalcite. American Mineralogist, 87, 623–629.

    Google Scholar 

  25. Wojnicki, M., Rudnik, E., Luty-Błocho, M., Pacławski, K., & Fitzner, K. (2012). Kinetic studies of gold(III) chloride complex reduction and solid phase precipitation in acidic aqueous system using dimethylamine borane as reducing agent. Hydrometallurgy, 127–128, 43–53.

    Article  Google Scholar 

  26. Han, S., Hou, W., Zhang, C., Sun, D., Huang, X., & Wang, G. (1998). Structure and the point of zero charge of magnesium aluminum hydroxide. Journal of the Chemical Society, Faraday Transactions, 94, 915–918.

    Article  CAS  Google Scholar 

  27. Petcharoen, K., & Sirivat, A. (2012). Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Materials Science and Engineering: B, 177, 421–427.

    Article  CAS  Google Scholar 

  28. Lagergren, S. (1898). Zur theorie der sogenannten adsorption geloster Stoffe. Kungliga Svenska Vetenskapsakad Handlingar, 24, 1–39.

    Google Scholar 

  29. Ho, Y. S., & McKay, D. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.

    Article  CAS  Google Scholar 

  30. Santosa, S. J. (2014). Sorption kinetics of Cd(II) species on humic acid-based sorbent. Clean: Soil, Air, Water, 42, 760–766.

    CAS  Google Scholar 

  31. Yang, Y., Gao, N., Chu, W., Zhang, Y., & Ma, Y. (2012). Adsorption of perchlorate from aqueous solution by the calcination product of Mg(Al;-Fe) hydrotalcite-like compounds. Journal of Hazardous Materials, 209–210, 318–325.

    Article  Google Scholar 

  32. Santosa, S. J., & Kunarti, E. S. (2010). High performance Mg/Al layered double hydroxide anionic clay for effective removal of dissolved humic and fulvic acids. In K. Ertuo & I. Mirza (Eds.), Water quality physical, chemical and biological characteristics (pp. 187–200). Nova Science Publisher Inc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sri Juari Santosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santosa, S.J., Ardhayanti, L.I., Permatasari, D., Narsito (2023). Magnetically Separable and Reusable Mag-Mg/Al Layered Double Hydroxides for the Adsorption of Disperse Dyes of Navy Blue and Yellow F3G. In: Debik, E., Bahadir, M., Haarstrick, A. (eds) Wastewater Management and Technologies. Water and Wastewater Management. Springer, Cham. https://doi.org/10.1007/978-3-031-36298-9_10

Download citation

Publish with us

Policies and ethics