Skip to main content

Dropout Prediction in a Web Environment Based on Universal Design for Learning

Part of the Lecture Notes in Computer Science book series (LNAI,volume 13916)

Abstract

Dropout prediction is an essential task in educational Web platforms to identify at-risk learners, enable individualized support, and eventually prevent students from quitting a course. Most existing studies on dropout prediction focus on improving machine learning methods based on a limited set of features to model students. In this paper, we contribute to the field by evaluating and optimizing dropout prediction using features based on personal information and interaction data. Multiple granularities of interaction and additional unique features, such as data on reading ability and learners’ cognitive abilities, are tested. Using the Universal Design for Learning (UDL), our Web-based learning platform called I3Learn aims at advancing inclusive science learning by focusing on the support of all learners. A total of 580 learners from different school types have used the learning platform. We predict dropout at different points in the learning process and compare how well various types of features perform. The effectiveness of predictions benefits from the higher granularity of interaction data that describe intermediate steps in learning activities. The cold start problem can be addressed using assessment data, such as a cognitive abilities assessment from the pre-test of the learning platform. We discuss the experimental results and conclude that the suggested feature sets may be able to reduce dropout in remote learning (e.g., during a pandemic) or blended learning settings in school.

Keywords

  • Dropout prediction
  • Science Education
  • Inclusion

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://pycaret.org.

  2. 2.

    https://lightgbm.readthedocs.io/en/v3.3.2/index.html.

References

  1. Arnold, K.E., Pistilli, M.D.: Course signals at Purdue: using learning analytics to increase student success. In: ACM International Conference Proceeding Series, pp. 267–270 (2012). https://doi.org/10.1145/2330601.2330666

  2. Azhar, N., Ahmad, W.F.W., Ahmad, R., Bakar, Z.A.: Factors affecting the acceptance of online learning among the urban poor: a case study of Malaysia. Sustainability (Switzerland) 13(18) (2021). https://doi.org/10.3390/su131810359

  3. Baker, R.: Using learning analytics in personalized learning. In: Murphy, M., Redding, S., Twyman, J. (eds.) Handbook on Personalized Learning for States, Districts, and Schools, pp. 165–174 (2016)

    Google Scholar 

  4. Barke, H.D., Pieper, C.: Der ionenbegriff - historischer spätzünder und gegenwärtiger außenseiter. Chemkon 15(3), 119–124 (2008). https://doi.org/10.1002/ckon.200810075

    CrossRef  Google Scholar 

  5. CAST: Universal design for learning guidelines version 2.2 (2018)

    Google Scholar 

  6. Dalipi, F., Imran, A.S., Kastrati, Z.: MOOC dropout prediction using machine learning techniques: review and research challenges. In: IEEE Global Engineering Education Conference, EDUCON, vol. 2018-April, pp. 1007–1014. IEEE Computer Society, May 2018. https://doi.org/10.1109/EDUCON.2018.8363340

  7. Elert, T.: Course Success in the Undergraduate General Chemistry Lab, Studien zum Physik- und Chemielernen, vol. 184 (2019)

    Google Scholar 

  8. Heller, K.A., Perleth, C.: Kognitiver Fähigkeitstest für 4. bis 12. Klassen, Revision. Beltz Test (2000)

    Google Scholar 

  9. Hilbing, C., Barke, H.D.: Ionen und ionenbindung: Fehlvorstellungen hausgemacht! ergebnisse empirischer erhebungen und unterrichtliche konsequenzen. CHEMKON 11(3), 115–120 (2004). https://doi.org/10.1002/ckon.200410009

    CrossRef  Google Scholar 

  10. Hodges, C., Moore, S., Lockee, B., Trust, T., Bond, A.: The difference between emergency remote teaching and online learning (2020). https://er.educause.edu/articles/2020/3/the-difference-between-emergency-remote-teaching-and-online-learning

  11. Ifenthaler, D., Yau, J.Y.-K.: Utilising learning analytics to support study success in higher education: a systematic review. Educ. Tech. Res. Dev. 68(4), 1961–1990 (2020). https://doi.org/10.1007/s11423-020-09788-z

    CrossRef  Google Scholar 

  12. Kauffman, H.: A review of predictive factors of student success in and satisfaction with online learning. Res. Learn. Technol. 23 (2015). https://doi.org/10.3402/rlt.v23.26507

  13. Kloft, M., Stiehler, F., Zheng, Z., Pinkwart, N.: Predicting MOOC dropout over weeks using machine learning methods. In: Proceedings of the EMNLP 2014 Workshop on Analysis of Large Scale Social Interaction in MOOCs, pp. 60–65. Association for Computational Linguistics, Doha, Qatar, October 2014. https://doi.org/10.3115/v1/W14-4111

  14. Lodge, J.M., Corrin, L.: What data and analytics can and do say about effective learning. NPJ Sci. Learn. 2(1) (2017). https://doi.org/10.1038/s41539-017-0006-5

  15. Luxford, C.J., Bretz, S.L.: Development of the bonding representations inventory to identify student misconceptions about covalent and ionic bonding representations. J. Chem. Educ. 91(3), 312–320 (2014). https://doi.org/10.1021/ed400700q

    CrossRef  Google Scholar 

  16. Manrique, R., Nunes, B.P., Marino, O., Casanova, M.A., Nurmikko-Fuller, T.: An analysis of student representation, representative features and classification algorithms to predict degree dropout. In: ACM International Conference Proceeding Series, pp. 401–410. Association for Computing Machinery, March 2019. https://doi.org/10.1145/3303772.3303800

  17. Mayringer, H., Wimmer, H.: Salzburger Lese-Screening für die Schulstufen 2–9 (SLS 2–9). hogrefe (2014)

    Google Scholar 

  18. Niedersächsisches Kultusministerium: Die niedersächsischen allgemein bildenden Schulen Zahlen und Grafiken (2021). https://www.mk.niedersachsen.de/startseite/service/statistik/die-niedersaechsischen-allgemein-bildenden-schulen-in-zahlen-6505.html

  19. de Oliveira, C.F., Sobral, S.R., Ferreira, M.J., Moreira, F.: How does learning analytics contribute to prevent students’ dropout in higher education: a systematic literature review. Big Data Cogn. Comput. 5(4) (2021). https://doi.org/10.3390/bdcc5040064

  20. Parkes, M., Gregory, S., Fletcher, P., Adlington, R., Gromik, N.: Bringing people together while learning apart: creating online learning environments to support the needs of rural and remote students. Australian Int. J. Rural Educ. 25(1), 66–78 (2015). https://doi.org/10.3316/aeipt.215238

    CrossRef  Google Scholar 

  21. Patricia Aguilera-Hermida, A.: College students’ use and acceptance of emergency online learning due to COVID-19. Int. J. Educ. Res. Open 1 (2020). https://doi.org/10.1016/j.ijedro.2020.100011

  22. Prenkaj, B., Velardi, P., Stilo, G., Distante, D., Faralli, S.: A survey of machine learning approaches for student dropout prediction in online courses. ACM Comput. Surv. 53(3) (2020). https://doi.org/10.1145/3388792

  23. Roski, M., Walkowiak, M., Nehring, A.: Universal design for learning: the more, the better? Educ. Sci. 11, 164 (2021). https://doi.org/10.3390/educsci11040164, https://www.mdpi.com/2227-7102/11/4/164

  24. Torsheim, T., et al.: Psychometric validation of the revised family affluence scale: a latent variable approach. Child Indic. Res. 9(3), 771–784 (2015). https://doi.org/10.1007/s12187-015-9339-x

    CrossRef  Google Scholar 

  25. Tovar, E., et al.: Do MOOCS sustain the UNESCOs quality education goal? In: 2019 IEEE Global Engineering Education Conference (EDUCON), pp. 1499–1503 (2019)

    Google Scholar 

  26. UNESCO: Guidelines for Inclusion: Ensuring Access to Education for All (2005)

    Google Scholar 

  27. UNESCO-UNEVOC: Medium-Term Strategy for 2021–2023 (2021)

    Google Scholar 

  28. de la Varre, C., Irvin, M.J., Jordan, A.W., Hannum, W.H., Farmer, T.W.: Reasons for student dropout in an online course in a rural k-12 setting. Distance Educ. 35(3), 324–344 (2014). https://doi.org/10.1080/01587919.2015.955259

    CrossRef  Google Scholar 

  29. Xenos, M., Pierrakeas, C., Pintelas, P.: A survey on student dropout rates and dropout causes concerning the students in the course of informatics of the Hellenic open university. Comput. Educ. 39(4), 361–377 (2002). https://doi.org/10.1016/S0360-1315(02)00072-6

    CrossRef  Google Scholar 

Download references

Acknowledgements

This work has been supported by the PhD training program LernMINT funded by the Ministry of Science and Culture, Lower Saxony, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin Roski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roski, M., Sebastian, R., Ewerth, R., Hoppe, A., Nehring, A. (2023). Dropout Prediction in a Web Environment Based on Universal Design for Learning. In: Wang, N., Rebolledo-Mendez, G., Matsuda, N., Santos, O.C., Dimitrova, V. (eds) Artificial Intelligence in Education. AIED 2023. Lecture Notes in Computer Science(), vol 13916. Springer, Cham. https://doi.org/10.1007/978-3-031-36272-9_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36272-9_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36271-2

  • Online ISBN: 978-3-031-36272-9

  • eBook Packages: Computer ScienceComputer Science (R0)