Skip to main content
  • 121 Accesses

Abstract

The Fontan circulation does not have a sub-pulmonary pump and therefore the pulmonary circulation is key to the optimal functioning of the Fontan circuit. Pulmonary blood flow may require modification in neonatal life and at any time during life and a low pulmonary vascular resistance is essential. This chapter discusses the pulmonary circulation and the various challenges faced by patients with a Fontan circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ao:

Aorta

AP:

Atriopulmonary

CMR:

Cardiovascular magnetic resonance

eNOS:

Endothelial nitric oxide synthetase

PA:

Pulmonary artery

PAH:

Pulmonary arterial hypertension

PAVM:

Pulmonary arterio-venous malformation

PVD:

Pulmonary vascular disease

PVR:

Pulmonary vascular resistance

TCPC:

Total cavo-pulmonary connection

TV:

Tricuspid valve

References

  1. Lardo AC, Webber SA, Friehs I, del Nido PJ, Cape EG. Fluid dynamic comparison of intra-atrial and extracardiac total cavopulmonary connections. J Thorac Cardiovasc Surg. 1999;117(4):697–704.

    Article  CAS  PubMed  Google Scholar 

  2. Senzaki H, Isoda T, Ishizawa A, Hishi T. Reconsideration of criteria for the Fontan operation. Influence of pulmonary artery size on postoperative hemodynamics of the Fontan operation. Circulation. 1994;89(3):1196–202.

    Article  CAS  PubMed  Google Scholar 

  3. Sakamoto K, Ota N, Fujimoto Y, Murata M, Ide Y, Tachi M, et al. Primary central pulmonary artery plasty for single ventricle with ductal-associated pulmonary artery coarctation. Ann Thorac Surg. 2014;98(3):919–26.

    Article  PubMed  Google Scholar 

  4. Elzenga NJ, von Suylen RJ, Frohn-Mulder I, Essed CE, Bos E, Quaegebeur JM. Juxtaductal pulmonary artery coarctation. An underestimated cause of branch pulmonary artery stenosis in patients with pulmonary atresia or stenosis and a ventricular septal defect. J Thorac Cardiovasc Surg. 1990;100(3):416–24.

    Article  CAS  PubMed  Google Scholar 

  5. Takawira F, Ayer JG, Onikul E, Hawker RE, Kemp A, Nicholson IA, et al. Evaluation of the extracardiac conduit modification of the Fontan operation for thrombus formation using magnetic resonance imaging. Heart Lung Circ. 2008;17(5):407–10.

    Article  PubMed  Google Scholar 

  6. Fogel MA, Hubbard A, Weinberg PM. A simplified approach for assessment of intracardiac baffles and extracardiac conduits in congenital heart surgery with two- and three-dimensional magnetic resonance imaging. Am Heart J. 2001;142(6):1028–36.

    Article  CAS  PubMed  Google Scholar 

  7. Egbe AC, Connolly HM, Miranda WR, Ammash NM, Hagler DJ, Veldtman GR, et al. Hemodynamics of Fontan failure: the role of pulmonary vascular disease. Circ Heart Fail. 2017;10(12):e004515.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dimopoulos K, Wort SJ, Gatzoulis MA. Pulmonary hypertension related to congenital heart disease: a call for action. Eur Heart J. 2014;35(11):691–700.

    Article  PubMed  Google Scholar 

  9. Mitchell MB, Campbell DN, Ivy D, Boucek MM, Sondheimer HM, Pietra B, et al. Evidence of pulmonary vascular disease after heart transplantation for Fontan circulation failure. J Thorac Cardiovasc Surg. 2004;128(5):693–702.

    Article  PubMed  Google Scholar 

  10. Henaine R, Vergnat M, Bacha EA, Baudet B, Lambert V, Belli E, et al. Effects of lack of pulsatility on pulmonary endothelial function in the Fontan circulation. J Thorac Cardiovasc Surg. 2013;146(3):522–9.

    Article  CAS  PubMed  Google Scholar 

  11. Kovacs G, Berghold A, Scheidl S, Olschewski H. Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J. 2009;34(4):888–94.

    Article  CAS  PubMed  Google Scholar 

  12. Takahashi K, Mori Y, Yamamura H, Nakanishi T, Nakazawa M. Effect of beraprost sodium on pulmonary vascular resistance in candidates for a Fontan procedure: a preliminary study. Pediatr Int. 2003;45(6):671–5.

    Article  CAS  PubMed  Google Scholar 

  13. Giardini A, Balducci A, Specchia S, Gargiulo G, Bonvicini M, Picchio FM. Effect of sildenafil on haemodynamic response to exercise and exercise capacity in Fontan patients. Eur Heart J. 2008;29(13):1681–7.

    Article  CAS  PubMed  Google Scholar 

  14. Ovaert C, Thijs D, Dewolf D, Ottenkamp J, Dessy H, Moons P, et al. The effect of bosentan in patients with a failing Fontan circulation. Cardiol Young. 2009;19(4):331–9.

    Article  PubMed  Google Scholar 

  15. Hirono K, Yoshimura N, Taguchi M, Watanabe K, Nakamura T, Ichida F, et al. Bosentan induces clinical and hemodynamic improvement in candidates for right-sided heart bypass surgery. J Thorac Cardiovasc Surg. 2010;140(2):346–51.

    Article  CAS  PubMed  Google Scholar 

  16. Goldberg DJ, French B, McBride MG, Marino BS, Mirarchi N, Hanna BD, et al. Impact of oral sildenafil on exercise performance in children and young adults after the Fontan operation: a randomized, double-blind, placebo-controlled, crossover trial. Circulation. 2011;123(11):1185–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schuuring MJ, Vis JC, van Dijk APJ, van Melle JP, Vliegen HW, Pieper PG, et al. Impact of bosentan on exercise capacity in adults after the Fontan procedure: a randomized controlled trial. Eur J Heart Fail. 2013;15(6):690–8.

    Article  CAS  PubMed  Google Scholar 

  18. Rhodes J, Ubeda-Tikkanen A, Clair M, Fernandes SM, Graham DA, Milliren CE, et al. Effect of inhaled iloprost on the exercise function of Fontan patients: a demonstration of concept. Int J Cardiol. 2013;168(3):2435–40.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hebert A, Mikkelsen UR, Thilen U, Idorn L, Jensen AS, Nagy E, et al. Bosentan improves exercise capacity in adolescents and adults after Fontan operation: the TEMPO (Treatment With Endothelin Receptor Antagonist in Fontan Patients, a Randomized, Placebo-Controlled, Double-Blind Study Measuring Peak Oxygen Consumption) study. Circulation. 2014;130(23):2021–30.

    Article  CAS  PubMed  Google Scholar 

  20. Goldberg DJ, Zak V, Goldstein BH, Schumacher KR, Rhodes J, Penny DJ, et al. Results of the Fontan Udenafil Exercise Longitudinal (FUEL) trial. Circulation. 2019;201:1–8.

    Google Scholar 

  21. Clift P, Berger F, Sondergaard L, Antonova P, Disney P, Nicolarsen J, Thambo JB et al. The efficacy and safety of macitentan in Fontan-palliated patients: results of the 52-week randomised, placebo-controlled RUBATO trial. European Heart Journal 2022; 43(Supp_2):ehac544.1560. https://doi.org/10.1093/eurheartj/ehac544.1560.

  22. Khairy P, Fernandes SM, Mayer JE, Triedman JK, Walsh EP, Lock JE, et al. Long-term survival, modes of death, and predictors of mortality in patients with Fontan surgery. Circulation. 2008;117(1):85–92.

    Article  PubMed  Google Scholar 

  23. Dobell ARC, Trusler GA, Smallhorn JF, Williams WG. Atrial thrombi after the Fontan operation. Ann Thorac Surg. 1986;42(6):664–7.

    Article  CAS  PubMed  Google Scholar 

  24. Balling G, Vogt M, Kaemmerer H, Eicken A, Meisner H, Hess J. Intracardiac thrombus formation after the Fontan operation. J Thorac Cardiovasc Surg. 2000;119(4):745–52.

    Article  CAS  PubMed  Google Scholar 

  25. Triedman JK, Bridges ND, Mayer JE, Lock JE. Prevalence and risk factors for aortopulmonary collateral vessels after Fontan and bidirectional Glenn procedures. J Am Coll Cardiol. 1993;22(1):207–15.

    Article  CAS  PubMed  Google Scholar 

  26. Ichikawa H, Yagihara T, Kishimoto H, Isobe F, Yamamoto F, Nishigaki K, et al. Extent of aortopulmonary collateral blood flow as a risk factor for Fontan operations. Ann Thorac Surg. 1995;59(2):433–7.

    Article  CAS  PubMed  Google Scholar 

  27. Spicer RL, Uzark KC, Moore JW, Mainwaring RD, Lamberti JJ. Aortopulmonary collateral vessels and prolonged pleural effusions after modified Fontan procedures. Am Heart J. 1996;131(6):1164–8.

    Article  CAS  PubMed  Google Scholar 

  28. Kanter KR, Vincent RN, Raviele AA. Importance of acquired systemic-to-pulmonary collaterals in the Fontan operation. Ann Thorac Surg. 1999;68(3):969–74; discussion 974–975.

    Article  CAS  PubMed  Google Scholar 

  29. Powell AJ. Aortopulmonary collaterals in single-ventricle congenital heart disease. Circ Cardiovasc Imaging. 2009;2(3):171–3.

    Article  PubMed  Google Scholar 

  30. Stern HJ. Aggressive coiling of aortopulmonary collaterals in single-ventricle patients is warranted. Pediatr Cardiol. 2010;31(4):449–53.

    Article  PubMed  Google Scholar 

  31. Bridges ND, Mayer JE, Lock JE, Jonas RA, Hanley FL, Keane JF, et al. Effect of baffle fenestration on outcome of the modified Fontan operation. Circulation. 1992;86(6):1762–9.

    Article  CAS  PubMed  Google Scholar 

  32. Airan B, Sharma R, Choudhary SK, Mohanty SR, Bhan A, Chowdhari UK, et al. Univentricular repair: is routine fenestration justified? Ann Thorac Surg. 2000;69(6):1900–6.

    Article  CAS  PubMed  Google Scholar 

  33. Lemler MS, Scott WA, Leonard SR, Stromberg D, Ramaciotti C. Fenestration improves clinical outcome of the Fontan procedure: a prospective, randomized study. Circulation. 2002;105(2):207–12.

    Article  PubMed  Google Scholar 

  34. Meadows J, Lang P, Marx G, Rhodes J. Fontan fenestration closure has no acute effect on exercise capacity but improves ventilatory response to exercise. J Am Coll Cardiol. 2008;52(2):108–13.

    Article  PubMed  Google Scholar 

  35. Hijazi ZM, Fahey JT, Kleinman CS, Kopf GS, Hellenbrand WE. Hemodynamic evaluation before and after closure of fenestrated Fontan. An acute study of changes in oxygen delivery. Circulation. 1992;86(1):196–202.

    Article  CAS  PubMed  Google Scholar 

  36. Imielski BR, Woods RK, Mussatto KA, Cao Y, Simpson PM, Tweddell JS. Fontan fenestration closure and event-free survival. J Thorac Cardiovasc Surg. 2013;145(1):183–7.

    Article  PubMed  Google Scholar 

  37. Gewillig M, Brown SC. The Fontan circulation after 45 years: update in physiology. Heart. 2016;102(14):1081–6.

    Article  PubMed  Google Scholar 

  38. Heinemann M, Breuer J, Steger V, Steil E, Sieverding L, Ziemer G. Incidence and impact of systemic venous collateral development after Glenn and Fontan procedures. Thorac Cardiovasc Surg. 2001;49(3):172–8.

    Article  CAS  PubMed  Google Scholar 

  39. Poterucha JT, Johnson JN, Taggart NW, Cabalka AK, Hagler DJ, Driscoll DJ, et al. Embolization of veno-venous collaterals after the Fontan operation is associated with decreased survival. Congenit Heart Dis. 2015;10(5):E230–6.

    Article  PubMed  Google Scholar 

  40. Kavarana MN, Jones JA, Stroud RE, Bradley SM, Ikonomidis JS, Mukherjee R. Pulmonary arteriovenous malformations after the superior cavopulmonary shunt: mechanisms and clinical implications. Expert Rev Cardiovasc Ther. 2014;12(6):703–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kavarana MN, Mukherjee R, Eckhouse SR, Rawls WF, Logdon C, Stroud RE, et al. Pulmonary artery endothelial cell phenotypic alterations in a large animal model of pulmonary arteriovenous malformations after the Glenn shunt. Ann Thorac Surg. 2013;96(4):1442–9.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Henaine R, Vergnat M, Mercier O, Serraf A, De Montpreville V, Ninet J, et al. Hemodynamics and arteriovenous malformations in cavopulmonary anastomosis: the case for residual antegrade pulsatile flow. J Thorac Cardiovasc Surg. 2013;146(6):1359–65.

    Article  PubMed  Google Scholar 

  43. Bernstein HS, Brook MM, Silverman NH, Bristow J. Development of pulmonary arteriovenous fistulae in children after cavopulmonary shunt. Circulation. 1995;92(9 Suppl):II309–14.

    Article  CAS  PubMed  Google Scholar 

  44. Feinstein JA, Moore P, Rosenthal DN, Puchalski M, Brook MM. Comparison of contrast echocardiography versus cardiac catheterization for detection of pulmonary arteriovenous malformations. Am J Cardiol. 2002;89(3):281–5.

    Article  PubMed  Google Scholar 

  45. Remy J, Remy-Jardin M, Wattinne L, Deffontaines C. Pulmonary arteriovenous malformations: evaluation with CT of the chest before and after treatment. Radiology. 1992;182(3):809–16.

    Article  CAS  PubMed  Google Scholar 

  46. Silverman JM, Julien PJ, Herfkens RJ, Pelc NJ. Magnetic resonance imaging evaluation of pulmonary vascular malformations. Chest. 1994;106(5):1333–8.

    Article  CAS  PubMed  Google Scholar 

  47. Srivastava D, Preminger T, Lock JE, Mandell V, Keane JF, Mayer JE, et al. Hepatic venous blood and the development of pulmonary arteriovenous malformations in congenital heart disease. Circulation. 1995;92(5):1217–22.

    Article  CAS  PubMed  Google Scholar 

  48. Shah MJ, Rychik J, Fogel MA, Murphy JD, Jacobs ML. Pulmonary AV malformations after superior cavopulmonary connection: resolution after inclusion of hepatic veins in the pulmonary circulation. Ann Thorac Surg. 1997;63(4):960–3.

    Article  CAS  PubMed  Google Scholar 

  49. McElhinney DB, Kreutzer J, Lang P, Mayer JE, del Nido PJ, Lock JE. Incorporation of the hepatic veins into the cavopulmonary circulation in patients with heterotaxy and pulmonary arteriovenous malformations after a Kawashima procedure. Ann Thorac Surg. 2005;80(5):1597–603.

    Article  PubMed  Google Scholar 

  50. Larsson ES, Eriksson BO, Sixt R. Decreased lung function and exercise capacity in Fontan patients. A long-term follow-up. Scand Cardiovasc J. 2003;37(1):58–63.

    Article  CAS  PubMed  Google Scholar 

  51. Opotowsky AR, Landzberg MJ, Earing MG, Wu FM, Triedman JK, Casey A, et al. Abnormal spirometry after the Fontan procedure is common and associated with impaired aerobic capacity. Am J Physiol Heart Circ Physiol. 2014;307(1):H110–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Alonso-Gonzalez R, Borgia F, Diller G-P, Inuzuka R, Kempny A, Martinez-Naharro A, et al. Abnormal lung function in adults with congenital heart disease: prevalence, relation to cardiac anatomy, and association with survival. Circulation. 2013;127(8):882–90.

    Article  PubMed  Google Scholar 

  53. Callegari A, Neidenbach R, Milanesi O, Castaldi B, Christmann M, Ono M, et al. A restrictive ventilatory pattern is common in patients with univentricular heart after Fontan palliation and associated with a reduced exercise capacity and quality of life. Congenit Heart Dis. 2019;14(2):147–55.

    Article  PubMed  Google Scholar 

  54. Wu FM, Opotowsky AR, Denhoff ER, Gongwer R, Gurvitz MZ, Landzberg MJ, et al. A pilot study of inspiratory muscle training to improve exercise capacity in patients with Fontan physiology. Semin Thorac Cardiovasc Surg. 2018;30(4):462–9.

    Article  PubMed  Google Scholar 

  55. Ait Ali L, Pingitore A, Piaggi P, Brucini F, Passera M, Marotta M, et al. Respiratory training late after Fontan intervention: impact on cardiorespiratory performance. Pediatr Cardiol. 2018;39(4):695–704.

    Article  PubMed  Google Scholar 

  56. Laohachai K, Winlaw D, Selvadurai H, Gnanappa GK, d’Udekem Y, Celermajer D, et al. Inspiratory muscle training is associated with improved inspiratory muscle strength, resting cardiac output, and the ventilatory efficiency of exercise in patients with a Fontan circulation. J Am Heart Assoc. 2017;6(8):e005750.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Komori M, Hoashi T, Shimada M, Kitano M, Ohuchi H, Kurosaki K, et al. Impact of phrenic nerve palsy on late Fontan circulation. Ann Thorac Surg. 2019;109:1897–902.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Clift .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Constantine, A., Clift, P. (2023). Managing the Pulmonary Circulation. In: Clift, P., Dimopoulos, K., Angelini, A. (eds) Univentricular Congenital Heart Defects and the Fontan Circulation. Springer, Cham. https://doi.org/10.1007/978-3-031-36208-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36208-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36207-1

  • Online ISBN: 978-3-031-36208-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics