Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 486))

  • 70 Accesses

Abstract

This chapter discusses the features of the synthesis of automatic control systems SEMS in group control. The expediency of using the principles of situational control in this case is shown. The problems of finding the optimal situational control algorithm are discussed, which always arise for the SEMS group in the joint execution of technological operations. It is concluded that the natural time limit for making an optimal decision on the situational control of a group of SEMS in real time imposes restrictions on the number of members of the controlled group and the distance between them, associated with the dynamics of the choice of environment and the dynamics of controllability of the SEMS themselves. Mathematical and algorithmic methods of decision support are given. To do this, for example, it is possible, based on the purpose of a particular robot, to compile a list of possible instructions. Then, using mathematical and computer modeling, determine a set of acceptable instructions for group behavior. It is shown that when solving this problem, it is necessary to take into account the dynamic characteristics of robots, which can be optimized by adjusting the parameters of automatic control systems for robots. Various approaches to decision making are analyzed: deductive, inductive and abductive, and it is concluded that the latter is the fastest by analogy with intuition, but its reliability depends on the completeness of the base of good decisions from past experience, i.e. depends strongly on the operating time of such robots in similar environmental conditions. When determining the optimal solution under conditions of incomplete certainty, it is advisable to use binary relations that can be expressed as logical equations in the Zhegalkin algebra, reduced to a matrix form, which makes it easy to parallelize the process of finding the optimal solution. Particular attention is paid to the issues of safe control. At the same time, the possibility of using influence diagrams is shown. The choice of specific circuit structures depends on the tasks solved by the group, the properties of the environment for the functioning of the group, the characteristics of the members of the group, and the resources available to implement the control system. Algorithms for assessing the risks of accidents on the sections of the analyzed routes are given, taking into account the “observed” area of the terrain. Estimates of group intelligence of robots and a generalized structure of a software package for testing models of groups of intelligent robots, including expert systems for creating dynamic models of interacting robots and environments, are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gorodetskiy, A.E., Tarasova, I.L.: Situational control a group of robots based on SEMS. In: Gorodetskiy, A.E., Tarasova, I.L. (eds.) Smart Electromechanical Systems: Group Interaction/Studies in Systems, Decision and Control, vol. 174, pp. 9–18. Springer International Publishing. https://doi.org/10.1007/978-3-319-99759-9-2

  2. Gorodetskiy, A.E., Kurbanov, V.G., Tarasova, I.L.: Decision-making in central nervous system of a robot. Info. Cont. Syst. 1, 21–30 (2018). https://doi.org/10.15217/issnl684-8853.2018.1.21 (in Russian)

  3. Vorob’ev, V.V.: Logical inference and action planning elements in robot groups. In: Proceedings 16th National Conference on Artificial Intelligence KII-2018, Moscow, vol. 1, pp. 88–96 (2018) (In Russian)

    Google Scholar 

  4. Ya, I.D., Shabanov, I.B.: Model of application of coalitions of intelligent mobile robots with limited communications. In: Proceedings 16th National Conference on Artificial Intelligence KII-2018, Moscow, vol. 1, pp. 97–105 (2018) (In Russian)

    Google Scholar 

  5. Pospelov, D.A.: Situation Management: Theory and Practice [Situacionnoe upravlenie: Teoriya i praktika], Nauka, M. 286p. (1986) (In Russian)

    Google Scholar 

  6. Kunc, G., Donnel, O.S.: Management: System and Situation Analysis of Control Functions [Upravlenie: sistemnyj i situacionnyj analiz upravlencheskih funkcij]. Progress, 588p. (2002) (In Russian)

    Google Scholar 

  7. Sokolov, B., Ivanov, D., Fridman, A.: Situational Modeling for Structural Dynamics Control of Industry-Business Processes and Supply Chains//Intelligent Systems: From Theory to Practice, Sgurev, V., Hadjiski, M., Kacprzyk, J. (eds.)., pp. 279–308. Springer-Verlag, London, Berlin, Heidelberg (2010)

    Google Scholar 

  8. Ya, F.A.: Situational Control of the Structure of Industrial and Natural Systems. Methods and Models. LAP, Saarbrucken, Germany (2015)

    Google Scholar 

  9. Mishin, S.P.: Optimal Control Hierarchies in Economic Systems [Optimal`ny`e ierarxii upravleniya v e`konomicheskix sistemax]. M. PMSOFT (2004) (In Russian)

    Google Scholar 

  10. Kalyaev, I.A., Kapustyan, S.G, Gaiduk, A.R.: Self-organizing distributed control systems for groups of intelligent robots built on the basis of the network model [Samoorganizuyushhiesya raspredelenny`e sistemy` upravleniya gruppami intellektual`ny`x robotov, postroenny`e na osnove setevoj modeli]. UBS 30(1), 605–639 (2010) (In Russian)

    Google Scholar 

  11. Kalyaev, I.A., Gaiduk, A.R., Kapustian, S.G.: Control of a team of intellectual objects based on schooling principles [Upravlenie kollektivom intellektual`ny`x ob``ektov na osnove stajny`x principov]. Bull. Scient. Center Russian Acad. Sci. 1(2), 20–27 (2005) (In Russian)

    Google Scholar 

  12. Kapustian, S.G.: Decentralized method of collective distribution of goals in the group of robots [Decentralizovanny`j metod kollektivnogo raspredeleniya celej v gruppe robotov]. In: SG Kapustian Proceedings of the higher educational institutions, Electronics, 2. pp. 84–91 (2006) (In Russian)

    Google Scholar 

  13. Kalyaev, I.A.: Principles of collective decision making and control in the group interaction of robots [Principy` kollektivnogo prinyatiya resheniya i upravleniya pri gruppovom vzaimodejstvii robotov]. In: Mobile Robots and Mechatronic Systems: Mat. Scientific Schools Conference. Publishing House of Moscow State University, pp. 204–221 (2000) (In Russian)

    Google Scholar 

  14. Kapustian, SG.: The method of organizing multi-agent interaction in distributed control systems of a group of robots when solving the area coverage problem [Metod organizacii mul`tiagentnogo vzaimodejstviya v raspredelenny`x sistemax upravleniya gruppoj robotov pri reshenii zadachi pokry`tiya ploshhadi]. Artificial Intell. 3, 715–727 (2004) (In Russian)

    Google Scholar 

  15. Ya, F.A.: SEMS-based control in locally organized hierarchical structures of robots collectives. In: Gorodetskiy, A.E., Kurbanov, V.G. (eds) Smart Electromechanical Systems: The Central Nervous System, Studies in Systems, Decision and Control, vol. 95, pp. 31–47. Springer International Publishing, Switzerland

    Google Scholar 

  16. Vasiliev, S.N., Zherlov, A.K., Fedosov, E.A., Fedunov, B.E.: Intellectual control of dynamic systems [Intellektual`noe upravlenie dinamicheskimi sistemami]. FIZMATLIT, 352 p. (2000) (In Russian)

    Google Scholar 

  17. Prishchepa, M.V.: Development of a user profile with account of the psychological aspects of human interaction with an information mobile robot [Razrabotka profilya pol`zovatelya s uchetom psixologicheskix aspektov vzaimodejstviya cheloveka s informacionny`m mobil`ny`m robotom]. Tr. SPIIRAN 21, 56–70 (2012). (In Russian)

    Google Scholar 

  18. Ladygina, I.V.: Social and ethical problems of robotics [social no-eticheskie problemy robototechniki]. Vyatka State Univ. Bull. 7, 27–31 (2017) (In Russia)

    Google Scholar 

  19. Karpov, V.E.: Emotions and temperament of robots behavioral aspects. J. Comp. Syst. Sci. Int. 5, 126–145 (In Russian)

    Google Scholar 

  20. Gorodetskiy, A.E., Tarasova, I.L.: Fuzzy mathematical modeling of poorly formalized processes and systems [Nechetkoe matematicheskoe modelirovanie ploxo formalizuemy’x processov i sistem ]. SPb.: Publishing house Polytechnic. Un-t 336 p. (2010) (In Russian)

    Google Scholar 

  21. Gorodetskiy, A.E., Tarasova, I.L., Kurbanov, V.G.: Safe Control of SEMS at Group Interaction of Robots. Materialy 10-j Vserossijskoj mul'tikonferencii po problemam upravlenija [Proceedings of the 10th all-Russian multi-conference on governance]. Divnomorskoye, Gelendzhik, vol. 2, pp. 259–262 (2017) (In Russian)

    Google Scholar 

  22. Shkodyrev, V.P.: Technical systems control: from mechatronics to cyber-physical systems. In: Gorodetskiy, A.E. (eds) Studies in Systems, Decision and Control: Smart Electromechanical Systems, vol. 49, pp. 3–6. Springer International Publishing, Switzerland (2016)

    Google Scholar 

  23. Gorodetskiy, A.E.: Smart electromechanical systems modules. In: Gorodetskiy, A.E. (ed) Studies in Systems, Decision and Control: Smart Electromechanical Systems, vol. 49, pp. 7–15. Springer International Publishing, Switzerland (2016)

    Google Scholar 

  24. Kulik, B.A., Ya, F.A.: Logical analysis of data and knowledge with uncertainties in SEMS. In: Gorodetskiy, A.E. (ed.) Studies in Systems, Decision and Control: Smart Electromechanical Systems, vol. 49, pp. 45–59. Springer International Publishing, Switzerland (2016)

    Google Scholar 

  25. Gorodetskiy, A.E., Tarasova, I.L., Kurbanov, V.G.: Logical-mathematical model of decision making in central nervous system SEMS. In: Gorodetskiy, A.E., Kurbanov, V.G (eds) Smart Electromechanical Systems: The Central Nervous System, pp. 51–60. Springer International Publishing AG (2017). https://doi.org/10.1007/978-3-319-53327-8_4

  26. Gorodetskiy, A.E., Tarasova, I.L., Kurbanov, V.G.: Behavioral decisions of a robot based on solving of systems of logical equations. In: Gorodetskiy, A.E., Kurbanov, V.G. (eds) Smart Electromechanical Systems: The Central Nervous System, pp. 61–70. Springer International Publishing AG (2017). https://doi.org/10.1007/978-3-319-53327-8_5

  27. Akkof, R., Jemeri, F.: O celeustremlennyh sistemah [About purposeful systems]. Sov Radio Publication, Moscow, 269 p. (1974) (In Russian)

    Google Scholar 

  28. Gorod A., Fridman A., Saucer B.: A quantitative approach to analysis of a system of systems operational boundaries. In: Proceedings of International Congress on Ultra Modern Telecommunications and Control Systems (ICUMT-2010), October 18–20, Moscow, pp. 655–661 (2010)

    Google Scholar 

  29. Melikhov, A.N., Berstein, L.S., Korovin, S.I.: Situacionnye sovetujushhie systemy s nechetkoj logikoj [Situational advising systems with fuzzy logic]. Moscow, Science Publication, 272 p. (1990) (In Russian)

    Google Scholar 

  30. DeRusso, P.M., Roy, R.J., Close, C.M.: State Variables for Engineers, 608 p. Wiley (1965)

    Google Scholar 

  31. Gorodetskiy, A.E., Kurbanov, V.G., Tarasova, I.L.: Methods of synthesis of optimal intelligent control systems SEMS. In: Gorodetskiy, A.E. (ed) Smart Electromechanical Systems, pp. 25–44. Springer International Publishing (2016). https://doi.org/10.1007/978-3-319-27547-5

  32. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 946 p. (2001)

    Google Scholar 

  33. Gorodetskiy, A.E., Tarasova, I.L., Kurbanov, V.G.: Challenges related to development of central nervous system of a robot on the bases of SEMS modules. In: Gorodetskiy, A.E., Kurbanov, V.G. (eds) Studies in Systems, Decision and Control, Smart Electromechanical Systems: The Central Nervous System, vol. 95, pp. 3–16. Springer International Publishing, Switzerland (2017)

    Google Scholar 

  34. Gorodetskiy, A.: Fundamentals of the Theory of Intelligent Control Systems [Osnovy teorii intellektual'nyh sistem upravlenija], 313 p. LAP LAMBERT Academic Publishing GmbH@Co. KG Publication (2011)

    Google Scholar 

  35. Gorodetskiy, A.E., Tarasova, I.L., Kurbanov, V.G.: Logical and probabilistic methods of formation of a dynamic space configuration of the robot group. In: Proceedings of the 10th all-Russian multi-conference on governance [Materialy 10-j Vserossijskoj mul'tikonferencii po problemam upravlenija] Divnomorskoye, Gelendzhik, vol. 2, pp. 262–265 (2017)

    Google Scholar 

  36. Yu, K.A.: Analysis of polynomial constraints by the solution tree method [Informacionno-upravljajushhie sistemy] 6(91), 6–9 (In Russian) (2017). https://doi.org/10.15217/issn1684-8853.2017.6.9

  37. Smart Electromechanical Systems/Studies in Systems, Decision and Control, vol. 49, , 277 p., Gorodetskiy, A.E. (ed). Springer International Publishing, Switzerland (2016). https://doi.org/10.1007/978-3-319-27547-5

  38. Smart Electromechanical Systems: The Central Nervous Systems/Studies in Systems, Decision and Control., vol. 95, 270 p. Gorodetskiy, A.E., Kurbanov, V.G. (eds). Springer International Publishing, Switzerland (2017). https://doi.org/10.1007/978-3-319-53327-8

  39. Iudin, D.B.: Computational Methods of Decision Theory [Vychislitel'nye metody teorii priniatiia reshenii], 320 p. Nauka Publication, Moscow (1989) (In Russian)

    Google Scholar 

  40. Lee, S.G., Diaz-Mercado, Y., Egerstedt, M.: Multirobot control using time-varying density functions. IEEE Trans. Robotics 31(2), 489–493 (2015). https://doi.org/10.1109/TRO.2015.2397771

  41. Rubenstein, M., Ahler, C., Nagpal R., Kilobot.: A low cost scalable robot system for collective behaviors. In: Proceedings IEEE International Conference on Robotics Automation (2012)

    Google Scholar 

  42. Mondada, F., Gambardella, L.M., Floreano, D., Dorigo, M.: The cooperation of swarm-bots: Physical interactions in collective robotics. IEEE Robot. Autom. Mag. 12(2) (2005)

    Google Scholar 

  43. Dorigo, M., Floreano, D., Gambardella, L.M., Mondada, F., Nolffi, S., Baaboura, T., Birattari, M., et al.: Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IEEE Robot. Autom. Mag. 20(4) (2013)

    Google Scholar 

  44. Karpov, V.E.: Control in static swarms. Problem statement. In: V11-th International scientific-practical conference “Integrated models and soft computing in artificial intelligence” (2013) (In Russian)

    Google Scholar 

  45. Dobrynin, D.A.: Intelligent robots yesterday, today, tomorrow. In: X National Conference on Artificial Intelligence with international participation (25–28 September, Obninsk): Conference Proceedings [X natsional'naia konferentsiia po iskusstvennomu intellektu s mezhdunarodnym uchastiem KII-2006 (25–28 sentiabria, Obninsk)], vol. 2. Moscow. FIZMATLIT Publication (2006) (in Russian)

    Google Scholar 

  46. Gorodetskiy, A., Kurbanov, V., Tarasova, I.: Formation of images based on sensory data of robots. In: PRIPT 2019. Pattern Recognition and Information Processing. Proceedings of the 14th International Conference, 21–23 May, Minsk, Belarus (2019)

    Google Scholar 

  47. Davydov, O.I., Platonov, A.K.: Robot and artificial intelligence. Technocratic approach. Preprint IPM im. M. V. Keldysh, 24 p. (2017) (In Russian). https://doi.org/10.20948/prepr-2017-112

  48. Krysin, L.P.: Types of pragmatic information in the “explanatory dictionary.” Izvestiya RAN seriya literatury I yazyka 74(2), 3–11 (2015). (In Russian)

    Google Scholar 

  49. Karmanov, V.G.: Mathematical Programming [Matematicheskoe programmirovanie ]. Fiz.-Mat. Literature Publication, 263p. (2004) (In Russian)

    Google Scholar 

  50. Svetlov, V.A.: Methodological concept of Charles Pearce's scientific knowledge: unity of abduction, deduction and induction. Logiko-Filosofskie shtudii 5, 165–187 (2008) (In Russian). ISSN 2071-9183

    Google Scholar 

  51. Zhegalkin, I.I.: Arithmetization ymbolic logic [Arifmetizatsiia simvolicheskoi logiki]. Mathematical Coll [Matematicheskii sbornik] 35(3–4) (1928) (in Russian)

    Google Scholar 

  52. Gorodetskiy, A.E., Dubarenko, V.V., Erofeev, A.A.: Algebraic approach to the solution of logical control problems. Automation Remote Cont. [Avtomatika i telemekhanika] 2, 127–138 (2000) (In Russian)

    Google Scholar 

  53. Gorodetskiy, A.E.: Smart electromechanical systems architectures. In: Gorodetskiy, A.E. (ed.) Smart Electromechanical Systems. Studies in Systems, Decision and Control, vol. 49, pp. 17–23. Springer International Publishing (2016). https://doi.org/10.1007/978-3-319-27547-5_3

  54. Gorodetskiy, A.E.: The principles of situational control SEMS Group. In: Gorodetskiy, A.E., Tarasova, I.L. (ed) Smart Electromechanical Systems: Group Interaction/Studies in Systems, Decision and Control, vol. 174, pp. 3–13. Springer International Publishing (2020). https://doi.org/10.1007/978-3-030-32710-1_1

  55. Gorodetskiy, A.E., Tarasova, I.L., Kurbanov, V.G.: Situational control of the group interaction of mobile robots. In: Gorodetskiy, A.E., Tarasova, I.L. (eds) Smart Electromechanical Systems: Group Interaction/Studies in Systems, Decision and Control, vol. 261, pp. 91–101. Springer International Publishing (2020). https://doi.org/10.1007/978-3-030-32710-7

  56. Romanov, V.P.: Intelligent Information Systems in the Economy: Textbook [Intellektual'nye informacionnye sistemy v ekonomike: Uchebnoe posobie ], Tihomirova, N.P. (ed.), 496 p. Ekzamen Publication, Moscow (2003) (In Russian)

    Google Scholar 

  57. Available at: http://hugin.sourceforge.net/

  58. Gorodetskiy, A.E., Tarasova, I.L.: Control and Neural Networks [Upravlenie i nejronnye seti], 312 p. Polytechnic University Publication, St. Petersburg (2005) (In Russian)

    Google Scholar 

  59. Gorodetskiy, A.E., Tarasova, I.L.: Smart Electromechanical Systems. Group Interaction. Studies in Systems, Decision and Control, vol. 174, 337p. Springer International Publishing (2018). https://doi.org/10.1007/978-3-319-99759-9.

  60. Ziniakov, V.Y., Gorodetskiy, A.E., Tarasova, I.L.: Control of vitality and reliability analysis. In: Gorodetskiy, A.E. (ed.) Smart Electromechanical Systems, pp 193–204. Springer International Publishing (2016). https://doi.org/10.1007/978-3-319-27547-5_18

  61. Ziniakov, V.Y., Gorodetskiy, A.E., Tarasova, I.L.: System failure probability modelling. In: Gorodetskiy, A.E. (ed.) Smart Electromechanical Systems, pp. 25–44. Springer International Publishing (2016). https://doi.org/10.1007/978-3-319-27547-5_4

  62. Gorodetskiy, A.E., Tarasova, I.L., Kurbanov, V.G.: Reduction of logical-probabilistic and logical-linguistic constraints to interval constraints in the synthesis of optimal SEMS. In: Gorodetskiy, A.E., Tarasova, I.L. (ed.) Smart Electromechanical Systems. Group Interaction, pp. 77–90. Springer International Publishing (2018). https://doi.org/10.1007/978-3-319-99759-9_7

  63. Yevtodyeva, M., Tselitsky, S.: Military unmanned aerial vehicles: trends in development and production. Path. Peace Sec. 57, 104–111 (2019). (In Russian)

    Google Scholar 

  64. Gorodetskiy, A.E., Tarasova, I.L., Kurbanov, V.G.: A logical-linguistic routing method for unmanned vehicles with the minimum probability of accidents. Control Sci. 4, 24–30 (2022)

    Google Scholar 

  65. Li, C.: Artificial intelligence technology in UAV equipment. In: 2021 IEEE/ACIS 20th International Fall Conference on Computer and Information Science (ICIS Fall), Xi’an, China, pp. 299–302 (2021). https://doi.org/10.1109/ICISFall51598.2021.9627359

  66. Xia, C., Yudi, A.: Multi–UAV path planning based on improved neural network. In: 2018 Chinese Control and Decision Conference (CCDC), Shenyang, China, pp. 354–359 (2018). https://doi.org/10.1109/CCDC.2018.8407158

  67. Varatharasan, V., Rao, A.S.S., Toutounji, E., et al.: Target detection, tracking and avoidance system for low-cost UAVs using AI-based approaches. In: 2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS), Cranfield, UK, pp. 142–147 (2019). https://doi.org/10.1109/REDUAS47371.2019.8999683

  68. Zheng, L., Ai, P., Wu, Y.: Building recognition of UAV remote sensing images by deep learning, IGARSS 2020–2020. In: IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, pp. 1185–1188 (2020). https://doi.org/10.1109/IGARSS39084.2020.9323322

  69. Zhang, Y., McCalmon, J., Peake, A., et al.: A symbolic-AI approach for UAV exploration tasks. In: 2021 7th International Conference on Automation, Robotics and Applications (ICARA), Prague, Czech Republic, pp. 101–105 (2021). https://doi.org/10.1109/ICARA51699.2021.9376403

  70. Aggarval, C.: Neural networks and deep learning. Springer International Publishing (2018)

    Google Scholar 

  71. Kim, H., Ben-Othman, J., Mokdad, L., et al.: Research challenges and security threats to AI-driven 5G virtual emotion applications using autonomous vehicles. Drones, Smart Dev., IEEE Netw. 34(6), 288–294 (2020). https://doi.org/10.1109/MNET.011.2000245

    Article  Google Scholar 

  72. Kim, M.L., Kosterenko, V.N., Pevzner, L.D., et al.: Automatic trajectory motion control system for mine unmanned aircraft. Mining Indus. J. 3(145), 60–64 (2019) (In Russian)

    Google Scholar 

  73. Kutakhov, V.P., Meshcheryakov, R.V.: Group control of unmanned aerial vehicles: a generalized problem statement of applying artificial intelligence technologies. Control Sci. 1, 55–60 (2022). https://doi.org/10.25728/cs.2022.1.5

  74. Dolgii, P.S., Nemykin, G.I., Dumitrash, G.F.: Unmanned control of vehicles. Molodoi Uchenyi 8.2(246.2), 13–15 (2019) (In Russian)

    Google Scholar 

  75. Vlasov, S.M., Boikov, V.I., Bystrov, S.V., Grigor’ev, V.V.: Noncontact local orientation means for robots [Beskontaktnye sredstva lokal’noi orientatsii robotov]. ITMO University, St. Petersburg (2017) (In Russian)

    Google Scholar 

  76. Moskvin, V.A.: Risks of Investment Projects [Riski investitsionnykh proektov]. INFRA-M, Moscow (2016) (In Russian)

    Google Scholar 

  77. Reshetnyak, O.I.: The methods of investment risk assessment in business planning. Bus. Info. 12, 189–194 (2017). (In Russian)

    Google Scholar 

  78. Yu, P.A.: Risk assessment for an investment project. Scient. J. KubSAU 19, 73–98 (2006) (In Russian)

    Google Scholar 

  79. Kulik, Yu.A., Volovich, V.N., Privalov, N.G., Kozlovskii, A.N.: The classification and quantitative assessment of innovation project risks. J. Mining Inst. 197, 124–128 (2012). (In Russian)

    Google Scholar 

  80. Yu, V.I.: Analysis of quantitative risk assessment methods for investment projects, Trudy. In: Proceedings of 12th Conference “Russian Regions in the Focus of Change” [12-oi konferentsii “Rossiiskie regiony v fokuse peremen”]. Yekaterinburg, pp. 52–61 (2017) (In Russian)

    Google Scholar 

  81. Korol’kova, E.M.: Risk Management: Control of Project Risks [Risk-Menedzhment: Upravlenie proektnymi riskami]. Tambov State Technical University, Tambov (2013) (In Russian)

    Google Scholar 

  82. Mirkin, B.G.: The Problem of Group Choice [Problema gruppovogo vybora]. Nauka, Moscow (1974). (In Russian)

    MATH  Google Scholar 

  83. Solozhentsev, E.D.: Risk and Efficiency Management in Economics: A Logical-Probabilistic Approach [Upravlenie riskom i effektivnost’yu v ekonomike: logiko-veroyatnostnyi podkhod]. St. Petersburg State University, St. Petersburg (2009) (In Russian)

    Google Scholar 

  84. Gorodetskiy, A.E., Tarasova, I.L., Kurbanov, V.G.: Classification of images in decision making in the central nervous system of SEMS. In: Gorodetskiy, A.E., Tarasova, I.L. (eds.) Smart Electromechanical Systems. Behavioral Decision Making, Studies in Systems, Decision and Control, vol. 352, pp. 187–196. Springer Nature Switzerland AG (2021)

    Google Scholar 

  85. Gorodetskiy, A.E., Kurbanov, V.G., Tarasova, I.L.: Patent RU no. 2756778 (2021)

    Google Scholar 

  86. Gorodetskiy, A.E., Tarasova, I.L., Kurbanov, V.G.: Assessment of UAV intelligence based on the results of computer modeling. In: Gorodetskiy, A.E., Tarasova, I.L. (eds) Smart Electromechanical Systems, Studies in Systems, Decision and Control, vol 419, pp 105–116. , Springer Nature Switzerland AG (2022). https://doi.org/10.1007/978-3-030-97004-8_8

  87. Gorodetskiy, A.E., Tarasova, I.L.: Intelligent software for automated testing of sensor systems [Intellektual'nye programmnye sredstva dlya avtomatizirovannyh ispytanij sensornyh sistem]. In: Physical Metrology: Theoretical and Applied Aspects, Gorodetskiy, A.E., Kurbanov, V.G. (eds), pp. 68–74. Publishing House KN (1996) (In Russian)

    Google Scholar 

  88. Gorodetskiy, A.E., Al-Rasasbeh, R.T.: Vector estimates of the group activity of operators. In: Collection of Works: Modern Problems of Socio-Economic Development and Information Technology, pp. 63–68. Baku (2004)

    Google Scholar 

  89. Al-Kasasbeh, R.T.: Statistical-similar model of organization work for small group information system operators. In: Proceeding of International Carpathian conference ICCC, pp. 217–224

    Google Scholar 

  90. Popchetelev, E.P.: Training for Studying Group, pp. 65–67. Leningrad Technical University News, Leningrad (1988)

    Google Scholar 

  91. Antonets1, V.A., Anishkina, N.M.: Measurements and perception in man. In: Machine Systems, 12 p. Preprint of IAP RAS, N 518, Nizhny Novgorod, 12 p. (1999) (In Russian)

    Google Scholar 

  92. Yoshida, K., Yokobayashi, M.: Development of AI-based simulation system for man-machine system behavior in accidental situations of nuclear power plant. https://www.semanticscholar.org/paper/Development-of-AI-Based-Simulation-System-for-in-of-Yoshida-Yokobayashi/9771efc557abb6aeb13abdaf24d946569d73ea70

  93. Hwa, S.J., Hyung-Shik, J.: Establishment of overall workload assessment technique for various tasks and workplaces. Int. J. Indust. Ergon. 28, pp. 341–353. ISSN 0169-8141 2001

    Google Scholar 

  94. Wataru, K., Hiroshi, U.: Man-Machine System. United States Patent 5247433

    Google Scholar 

  95. Eykhoff, P.: System Identification, Parameter and State Estimation. Wiley, London (1974)

    Google Scholar 

  96. Gorodetskiy, A.E.: Fuzzy decision making in design on the basis of the hubituality. In: Reznik, L., Dimitrov, V., Kasprzyk, J. (eds) Fuzzy System Design, Physica Verlag. ISBN 3-7908-1118-1 (1998)

    Google Scholar 

  97. Gorodetskiy, A.E.: On the use of the habitual situation for accelerating decision-making in intelligent information and measurement systems [Ob ispol'zovanii situacii privychnosti dlya uskoreniya prinyatiya reshenij v intellektual'nyh informacionno-izmeritel'nyh sistemah]. In: Gorodetskiy, A.E., Kurbanov, V.G. (eds) Physical Metrology: Theoretical and Applied Aspects, pp. 141–151. Publishing House KN (1996)

    Google Scholar 

  98. Renzulli, J.S.: What makes giftedness? Reexamining a definition. Phi Delta Kappan 60(3), pp 180–184, 261 (1978)

    Google Scholar 

  99. Renzulli, J.S.: Schools for Talent Development: A Practical Plan for Total School Improvement. Creative Learning Press, Mansfield Center, CT (1994)

    Google Scholar 

  100. Renzulli, J.S., Reis, S.M.: The Schoolwide Enrichment Model: A Comprehensive Plan for Educational Excellence. Creative Learning Press, Mansfield Center, CT (1985)

    Google Scholar 

  101. Gorodetskiy, A.E., Tarasova, I.L.: Estimates of the group intelligence of robots in robotic systems. In: Gorodetskiy, A.E., Tarasova, I.L. (eds) Smart Electromechanical Systems: Group Interaction/Studies in Systems, Decision and Control, vol. 174, pp. 161–170. Springer International Publishing (2019). https://doi.org/10.1007/978-3-319-99759-9_13

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gorodetskiy, A.E., Tarasova, I.L. (2023). Group Control. In: Introduction to the Theory of Smart Electromechanical Systems. Studies in Systems, Decision and Control, vol 486. Springer, Cham. https://doi.org/10.1007/978-3-031-36052-7_3

Download citation

Publish with us

Policies and ethics