Skip to main content

Global Optimisation for Improved Volume Tracking of Time-Varying Meshes

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Abstract

Processing of deforming shapes represented by sequences of triangle meshes with connectivity varying in time is difficult, because of the lack of temporal correspondence information, which makes it hard to exploit the temporal coherence. Establishing surface correspondence is not an easy task either, especially since some surface patches may have no corresponding counterpart in some frames, due to self-contact. Previously, it has been shown that establishing sparse correspondence via tracking volume elements might be feasible, however, previous methods suffer from severe drawbacks, which lead to tracking artifacts that compromise the applicability of the results. In this paper, we propose a new, temporally global optimisation step, which allows to improve the intermediate results obtained via forward tracking. Together with an improved formulation of volume element affinity and a robust means of identifying and removing tracking irregularities, the procedure yields a substantially better model of temporal volume correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bogo, F., Romero, J., Pons-Moll, G., Black, M.J.: Dynamic FAUST: registering human bodies in motion. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  2. Bojsen-Hansen, M., Li, H., Wojtan, C.: Tracking surfaces with evolving topology. ACM Trans. Graph. 31(4) (2012)

    Google Scholar 

  3. Božič, A., Palafox, P., Zollhöfer, M., Dai, A., Thies, J., Nießner, M.: Neural deformation graphs for globally-consistent non-rigid reconstruction. arXiv preprint arXiv:2012.01451 (2020)

  4. Budd, C., Huang, P., Klaudiny, M., Hilton, A.: Global non-rigid alignment of surface sequences. Int. J. Comput. Vis. 102(1–3), 256–270 (2013)

    Article  MathSciNet  Google Scholar 

  5. Cagniart, C., Boyer, E., Ilic, S.: Free-form mesh tracking: a patch-based approach. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1339–1346 (2010). https://doi.org/10.1109/CVPR.2010.5539814

  6. Collet, A., et al.: High-quality streamable free-viewpoint video. ACM Trans. Graph. 34(4), 1–13 (2015). https://doi.org/10.1145/2766945

    Article  Google Scholar 

  7. Dvořák, J., Vaněček, P., Váša, L.: Towards understanding time varying triangle meshes. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12746, pp. 45–58. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77977-1_4

    Chapter  Google Scholar 

  8. Dvořák, J., Káčereková, Z., Vaněček, P., Hruda, L., Váša, L.: As-rigid-as-possible volume tracking for time-varying surfaces. Comput. Graph. 102, 329–338 (2022). https://doi.org/10.1016/j.cag.2021.10.015

    Article  Google Scholar 

  9. Guo, K., Xu, F., Wang, Y., Liu, Y., Dai, Q.: Robust non-rigid motion tracking and surface reconstruction using l0 regularization. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 3083–3091 (2015). https://doi.org/10.1109/ICCV.2015.353

  10. Huang, C.H., Allain, B., Franco, J.S., Navab, N., Ilic, S., Boyer, E.: Volumetric 3d tracking by detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  11. Huang, C.H., Boyer, E., Ilic, S.: Robust human body shape and pose tracking. In: 2013 International Conference on 3D Vision - 3DV 2013, pp. 287–294 (2013). https://doi.org/10.1109/3DV.2013.45

  12. Huang, C.H.P., et al.: Tracking-by-detection of 3d human shapes: from surfaces to volumes. IEEE Trans. Pattern Anal. Mach. Intell. 40(8), 1994–2008 (2018). https://doi.org/10.1109/TPAMI.2017.2740308

    Article  Google Scholar 

  13. Li, H., Adams, B., Guibas, L.J., Pauly, M.: Robust single-view geometry and motion reconstruction. ACM Trans. Graph. 28(5), 1–10 (2009). https://doi.org/10.1145/1618452.1618521

    Article  Google Scholar 

  14. Moynihan, M., Ruano, S., Pages, R., Smolic, A.: Autonomous tracking for volumetric video sequences. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 1660–1669 (2021)

    Google Scholar 

  15. Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2262–2275 (2010)

    Article  Google Scholar 

  16. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Occupancy flow: 4d reconstruction by learning particle dynamics. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  17. Prada, F., Kazhdan, M., Chuang, M., Collet, A., Hoppe, H.: Spatiotemporal atlas parameterization for evolving meshes. ACM Trans. Graph. 36(4), 1–12 (2017). https://doi.org/10.1145/3072959.3073679

    Article  Google Scholar 

  18. Sorkine-Hornung, O., Rabinovich, M.: Least-squares rigid motion using svd (2016). Technical note

    Google Scholar 

Download references

Acknowledgement

This work was supported by the project 20-02154S of the Czech Science Foundation. Jan Dvořák and Filip Hácha were partially supported by the University specific research project SGS-2022-015, New Methods for Medical, Spatial and Communication Data. The authors thank Diego Gadler from AXYZ Design, S.R.L. for providing some of the test data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Dvořák .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dvořák, J., Hácha, F., Váša, L. (2023). Global Optimisation for Improved Volume Tracking of Time-Varying Meshes. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 10476. Springer, Cham. https://doi.org/10.1007/978-3-031-36027-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36027-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36026-8

  • Online ISBN: 978-3-031-36027-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics