Skip to main content

Mechanical Energy Harvesting Scheme, Implementation Aspects, and Applications

  • Chapter
  • First Online:
Energy Harvesting Trends for Low Power Compact Electronic Devices

Part of the book series: EAI/Springer Innovations in Communication and Computing ((EAISICC))

  • 240 Accesses

Abstract

In the last decade, when our daily life is boosted by micro devices, it is required to look at alternative energy solutions of power supply technologies. Energy harvesting has gained attention as an alternative energy solution. In energy harvesting, there is the conversion of ambient energy in the environment into electrical energy. Among all, the mechanical energy source is the most approachable source to harvest energy using thin films and MEMS technologies. In MEMS-based energy harvesters, mechanical vibrations are exploited for delivering sufficient energy on small scale. In further advancement, MEMS devices can be extended to piezoelectric, electromagnetic transductions, solar cells, and magnetic fields for implementing energy harvesting purposes. These harvesters realize a mechanical resonator with a high-quality factor by using the mechanical structure and can be fabricated using MEMS fabrication technologies. There is a wide range of applications of mechanical energy harvesters including vibrations engines, ultralow-power technology, railway applications, pathway sustainability, structural health monitoring, and self-powered Internet-of-Things (IoT) sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moll F et al (2005) Review of energy harvesting techniques and applications for microelectronics. Proc SPIE 5837, VLSI Circuits and Systems II (2005). https://doi.org/10.1117/12.613046

  2. Beeby SP et al (2006) Meas Sci Technol 17:R175

    Article  Google Scholar 

  3. Roundy S et al (2004) Energy scavenging for wireless sensor networks: with special focus on vibrations. Kluwer Academic, Boston, MA

    Book  Google Scholar 

  4. Priya S et al (2009) Energy harvesting technologies. Springer, New York

    Book  Google Scholar 

  5. Abdulkadir M et al (2013) Mechanical energy harvesting devices for low frequency applications: revisited. ARPN Journal of Engineering and Applied Sciences 8(7)

    Google Scholar 

  6. Glynne-Jones P, White NM (2001) Self-powered systems: a review of energy sources. Sens Rev 21(2):91–98

    Article  Google Scholar 

  7. Chu F et al (2018) Hybrid energy harvesting from mechanical vibrations and magnetic field. Appl Phys Lett 113:013901

    Article  Google Scholar 

  8. Tounsia F et al (2019) A review on design improvements and techniques for mechanical energy harvesting using piezoelectric and electromagnetic schemes. Energy Convers Manag 199:111973

    Article  Google Scholar 

  9. Aurel Chirap et al. (2014) A study on light energy harvesting from indoor environment 12th international conference on development and application systems, Suceava, Romania, may 15-17

    Google Scholar 

  10. Chen P et al (2019) Energy harvesting under dim-light condition with dye-sensitized and perovskite solar cells. Front Chem 7:209

    Article  Google Scholar 

  11. Yan J et al (2022) Solar energy harvesting technologies for PV self-powered applications: A comprehensive review. Renew Energy 188:678–697

    Article  Google Scholar 

  12. De Rossi F et al (2015) Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting. Appl Energy 156:413–422

    Article  Google Scholar 

  13. Reich NH et al (2011) Charge yield potential of indoor-operated solar cells incorporated into product integrated photovoltaic (PIPV). Renew Energy 36:642–647

    Article  Google Scholar 

  14. Tudor MJ et al (2014) Review of the application of energy harvesting in buildings. Meas Sci Technol 25:012002

    Article  Google Scholar 

  15. Zungeru AM et al (2012) Radio frequency energy harvesting and management for wireless sensor networks. arXiv:1208.4439

    Google Scholar 

  16. Schober R et al (2015) Energy-efficient resource allocation for wireless powered communication networks. IEEE Trans Wirel Commun. https://doi.org/10.1109/TWC.2015.2502590

  17. Ding Z et al (2015) Application of smart antenna technologies in simultaneous wireless information and power transfer. IEEE Commun Mag 53(4):86–93. https://doi.org/10.1109/MCOM.2015.7081080

    Article  Google Scholar 

  18. Fiez T et al (2008) Efficient far-field radio frequency energy harvesting for passively powered sensor networks. IEEE J Solid State Circuits 43(5)

    Google Scholar 

  19. Ventura L, et al (2010) Ambient RF energy harvesting. International conference on renewable energies and power quality (ICREPQ’10) Granada (Spain), 23th - 25th March, 2010

    Google Scholar 

  20. Rowe D et al (1991) Low cost miniature thermoelectric generator. Electron Lett:27

    Google Scholar 

  21. Jeffrey Snyder G (2008) Small thermoelectric generators. Electrochem Soc Interface 17:54

    Article  Google Scholar 

  22. Washabaugh PD, et al. (2001) An integrated combustor-thermoelectric micro power generator. Transducers '01 Eurosensors XV, 11th International Conference on Solid-State Sensors and Actuators, Munich, Germany, June 10–14, 2001

    Google Scholar 

  23. Seiko Instruments Inc. http://www.sii.co.jp/info/eg/thermic main.html

  24. Applied Digital. http://www.adsx.com/prodservpart/thermolife.html

  25. Chen WH et al (2012) Design of heat sink for improving the performance of thermoelectric generator using two-stage optimization. Energy 39:236–245

    Article  Google Scholar 

  26. Yuhao W et al (2021) A review on vibration energy harvesting. E3S Web of Conferences 245:01041

    Article  Google Scholar 

  27. Harne RL, Wang KW (2013) A review of the recent research on vibration energy harvesting via bi-stable systems. Smart Mater Struct 22(2)

    Google Scholar 

  28. Roundy S, Wright PK, Rabaye J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26:1131–1144

    Article  Google Scholar 

  29. Mertens R et al (2009) Micropower energy harvesting. Solid State Electron 53:684–693

    Article  Google Scholar 

  30. Akhtar F, Rehmani MH (2015) Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: a review. Renew Sust Energ Rev 45:769–784

    Article  Google Scholar 

  31. Elvin N, Erturk A (2013) Introduction and methods of mechanical energy harvesting in advances in energy harvesting methods. Springer, Berlin, Germany, pp 3–9

    Google Scholar 

  32. Rajagopalan P, Singh V, Palani I (2018) Enhancement of ZnO based flexible nano generators via sol gel technique for sensing and energy harvesting applications. Nanotechnology

    Google Scholar 

  33. Schmidt OG et al (2017) Scalable single crystalline PMN-PT nanobelts sculpted from bulk for energy harvesting. Nano Energy 31:239–246

    Article  Google Scholar 

  34. Friswell MI (2011) Experimental and analytical parametric study of single-crystal unimorph beams for vibration energy harvesting. IEEE Trans Ultrason Ferroelectr Freq Control 58(7):1508–1520

    Article  Google Scholar 

  35. Li H et al (2011) Preparation and characterization of PZT thick film enhanced by ZnO nanowhiskers for MEMS piezoelectric generators. Progr Nat Sci Mater Int 21(2):159–163

    Article  Google Scholar 

  36. Park K et al (2017) Lead-free BaTiO 3 nanowire arrays based piezoelectric energy harvester. MRS Adv 2(56):3415–3420

    Article  Google Scholar 

  37. Lee G et al (2016) Optimized piezoelectric and structural properties of (bi, Na) TiO3-(bi, K) TiO3 ceramics for energy harvester applications. Ceram Int 42(13):14355–14363

    Article  Google Scholar 

  38. Farinholt K, at al. (2007) Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart Mater Struct 16(5):1810

    Article  Google Scholar 

  39. Evoy S et al (2014) A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater Struct 23(3)

    Google Scholar 

  40. Elvin N, Erturk A (2013) Introduction and methods of mechanical energy harvesting. In: A. (ed) Advances in energy harvesting methods. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5705-3_1

    Chapter  Google Scholar 

  41. Schmidt MA et al (2001) A combustion-based MEMS thermoelectric power generator. In: Proc. 11th Int. Conf. On solid-state sensors and actuators, transducers 01, Munich, Germany, pp 1A3–1A102

    Google Scholar 

  42. Goldfarb M, Jones LD (1999) On the efficiency of electric power generation with piezoelectric ceramic. Trans ASME J Dyn Syst Meas Control 121:566–571

    Article  Google Scholar 

  43. Piezoelectric Ceramics Data Book for Designers, Morgans Electroceramics

    Google Scholar 

  44. Mateu L, Moll F (2005) Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts. J Intell Mater Syst Struct 16(10):835–845

    Article  Google Scholar 

  45. Siores E et al (2011) An investigation of energy harvesting from renewable sources with PVDF and PZT. Smart Mater Struct 20(5):055019

    Article  Google Scholar 

  46. Sodano A et al (2005) Generation and storage of electricity from power harvesting devices. J Intell Mater Syst Struct 16

    Google Scholar 

  47. Mohammadi F, Khan A (2003) Power generation from piezoelectric lead zirconate titanate fiber composites. Mater Res 736:1–6

    Google Scholar 

  48. Funasaka T et al (1999) Piezoelectric generator using a LiNbO3 plate with an inverted domain. In: IEEE Ultrasonics Symp, Honolulu, HI, pp 959–962

    Google Scholar 

  49. Griffith BP et al (1995) A gait powered autologous battery charging system for artificial organs. Am Soc for Artif Internal Organs J 41M:588–595

    Google Scholar 

  50. Pondrom P et al (2014) Vibration-based energy harvesting with stacked piezoelectrets. Appl Phys Lett 104(17):172901

    Article  Google Scholar 

  51. Gershenfeld N et al (1998) Parasitic power harvesting in shoes. In: Proceedings - 2nd IEEE International Conference on Wearable Computing (California), pp 132–139

    Google Scholar 

  52. Granstrom J et al (1810) (2007) energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart Mater Struct 16(5)

    Google Scholar 

  53. Kymissis J et al (1998) Parasitic power harvesting in shoes. In: Proceedings of the second international symposium on wearable computers. Digest of Papers, IEEE, pp 132–139

    Google Scholar 

  54. Corina Covaci and Aurel Gontean (2020) Piezoelectric energy harvesting solutions: A review. Sensors 20(12):3512

    Article  Google Scholar 

  55. Roundy S et al (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26:1131–1144

    Article  Google Scholar 

  56. Kim et al (2013) Comparison of MEMS PZT cantilevers based on d31 and d33 modes for vibration energy harvesting. J Microelectromech Syst 22(1)

    Google Scholar 

  57. Renaud M et al (2009) Harvesting energy from the motion of human limbs: the design and analysis of an impact-based piezoelectric generator. Smart Mater Struct 18(3):035001

    Article  Google Scholar 

  58. Zhang Y, Cai C (2012) A retrofitted energy harvester for low frequency vibrations. Smart Mater Struct 21(7):075007

    Article  Google Scholar 

  59. Pillatsch et al (2012) A scalable piezoelectric impulse-excited energy harvester for human body excitation. Smart Mater Struct 21(11):115018

    Article  Google Scholar 

  60. Sohn J et al (2005) An investigation on piezoelectric energy harvesting for MEMS power sources. Proc. IMechE 219 part C. J. Mech. Eng. Sci.:429–436

    Google Scholar 

  61. Todaro et al. (2017) Piezoelectric MEMS vibrational energy harvesters: advances and outlook. Microelectron Eng, 183: 23–36

    Google Scholar 

  62. Ammar et al (2005) Wireless sensor network node with asynchronous architecture and vibration harvesting micro power generator. In: Proceedings of the 2005 joint conference on Smart objects and ambient intelligence: innovative context-aware services: usages and technologies. ACM, pp 287–292

    Chapter  Google Scholar 

  63. Wright et al (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26:1131–1144

    Article  Google Scholar 

  64. Shen et al (2009) Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting. Sensors Actuators A Phys 154(1):103–108

    Article  Google Scholar 

  65. Liu et al (2008) A mems-based piezoelectric power generator array for vibration energy harvesting. Microelectron J 39(5):802–806

    Article  Google Scholar 

  66. Marzencki et al (2005) Design and fabrication of piezoelectric micro power generators for autonomous microsystems. In: Proc. Symp. On design, test, integration and packaging of MEMS/MOEMS DTIP05, Montreux, Switzerland, pp 299–302

    Google Scholar 

  67. Kim et al (2005) MEMS power generator with transverse mode thin film PZT. Sensors Actuators A 122:16–22

    Article  Google Scholar 

  68. Yang et al (2009) Power generation with laterally packaged piezoelectric fine wires. Nat Nanotechnology 4(1):34–39

    Article  MathSciNet  Google Scholar 

  69. Xu et al (2010) Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat Commun 1:93

    Article  Google Scholar 

  70. Dagdeviren et al (2014) Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc National Academy Sci 111(5):1927–1932

    Article  Google Scholar 

  71. Dogheche et al (2005) A bi-stable micro-machined piezoelectric transducer for mechanical to electrical energy transformation. In: Proceeding Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, Montreux, Switzerland, pp 303–304

    Google Scholar 

  72. Kim et al (2005) Piezoelectric energy harvesting under high pre-stressed cyclic vibrations. J Electroceram 15(1):27–34

    Article  Google Scholar 

  73. Adhikari et al (2009) Piezoelectric energy harvesting from broadband random vibrations. Smart Mater Struct 18, No. 11

    Google Scholar 

  74. Lang et al (2001) Vibration-to-electric energy conversion. IEEE Trans Very Large Scale Integration (VLSI) Systems 9(1):64–76

    Article  Google Scholar 

  75. Meninger S (1999) A low power controller for a MEMS based energy converter MSc thesis. Massachusetts Institute of Technology

    Google Scholar 

  76. Elvin and Erturk (2013) Advances in energy harvesting methods. Springer Science & Business Media

    Book  Google Scholar 

  77. Sue C-Y, Tsai N-C (2012) Human powered MEMS-based energy harvest devices. Appl Energy 93:390–403

    Article  Google Scholar 

  78. Roundy S (2003) Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion. PhD Thesis, University of California, Berkeley

    Google Scholar 

  79. Liu et al (2011) Design of Self-powered Digital Over-current Protector. IEEE, pp 1047–1050

    Google Scholar 

  80. Moll F et al (2020) Mechanical energy harvesting taxonomy for industrial environments: application to the railway industry. IEEE Trans Intell Transp Syst 21(7):2696–2706

    Article  Google Scholar 

  81. Ali et al (2019) Piezoelectric energy harvesters for biomedical applications. Nano Energy 57:879–902

    Article  Google Scholar 

  82. Surmenev et al (2019) Hybrid lead-free polymer-based scaffolds with improved piezoelectric response for biomedical energy harvesting applications: A review. Nano Energy 62:475–506

    Article  Google Scholar 

  83. Mhetre et al (2011) Micro energy harvesting for biomedical applications: a review. IEEE 3rd Internat Conf Electron Comput Technol 3:1–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, P.P., Singh, A.K., Nigam, S., Singh, M.K. (2023). Mechanical Energy Harvesting Scheme, Implementation Aspects, and Applications. In: Nella, A., Bhowmick, A., Kumar, C., Rajagopal, M. (eds) Energy Harvesting Trends for Low Power Compact Electronic Devices. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-35965-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35965-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35964-4

  • Online ISBN: 978-3-031-35965-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics