Skip to main content

Cost–Benefit Analysis of Transport Policies: An Application to Subsidies in Air Transport Markets

  • Chapter
  • First Online:
Economic Evaluation of Transport Projects

Abstract

 In this chapter, we use the cost-benefit analysis (CBA) to evaluate subsidies in transport markets. The CBA of any public intervention requires the comparison of the situations with and without intervention, identifying winners and losers, and carefully analysing the key parameters that would allow the public policy to induce the desired effects in the market. In particular, we focus on subsidies for resident passengers in air transport markets. We prove that the effectiveness of the subsidy strongly depends on the particular characteristics of the route, such as the level of competition, the proportion of residents, or the shape of residents’ and non-residents’ demand functions. Thus, any evaluation of the effects of such subsidies has to be performed route by route, taking into account the particular characteristics of the route, the market share of residents and non-residents, and the degree of competition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This chapter is based on de Rus & Socorro (2022).

  2. 2.

    For the sake of simplicity, we consider linear demand functions. However, main results also hold for non-linear demands, especially those related to the superiority of specific subsidies over ad valorem ones and how these differences may be mitigated when the subsidy is granted only to resident passengers.

  3. 3.

    The assumption of constant marginal operating costs in air transport is quite common in the economic literature (Oum & Waters, 1997). However, if there is an expected increase of the demand, airlines might face increasing marginal operating costs in the short-run. We discuss this possibility later on.

  4. 4.

    In this chapter, producers’ surplus refers to both capital owners’ surplus and landowners’ surplus (see Chap. 2).

  5. 5.

    In this chapter, we consider no change in workers’ surplus.

  6. 6.

    See Johansson & Kriström (2016) for a detailed explanation of the aggregation problems that may arise and the practical approaches to address them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ginés de Rus .

Appendices

Appendix 1: Mathematical Expressions of the Model

Equilibrium in the Absence of Public Subsidies: The Monopoly Case

The monopoly carrier chooses the ticket-price \(p_{S}\) that solves the following maximization program:

$$\mathop {{\text{Max}}}\limits_{{P_{s} }} \alpha N\left( {p_{S} - c} \right)x^{R} + \left( {1 - \alpha } \right)N\left( {p_{S} - c} \right)x^{{{\text{NR}}}} ,$$
(5.23)

with \(x^{R} = \frac{{a_{R} - P_{S} }}{{b_{R} }}\), \({\text{and}}\,x^{{{\text{NR}}}} = \frac{{a_{{{\text{NR}}}} - P_{S} }}{{b_{{{\text{NR}}}} }}\).

The first-order condition of the above maximization program is given by:

$$\frac{N}{{b_{R} b_{{{\text{NR}}}} }}\left( {b_{{{\text{NR}}}} \alpha \left( {a_{R} + c} \right) + b_{R} \left( {1 - \alpha } \right)\left( {a_{{{\text{NR}}}} + c} \right) - 2p_{S} \left( {\alpha b_{{{\text{NR}}}} + \left( {1 - \alpha } \right)b_{R} } \right)} \right) = 0.$$
(5.24)

Solving the first-order condition we obtain the following optimal ticket-price:

$$p_{S}^{0} = \frac{{b_{{{\text{NR}}}} \alpha \left( {a_{R} + c} \right) + b_{R} \left( {1 - \alpha } \right)\left( {a_{{{\text{NR}}}} + c} \right)}}{{2\left( {\alpha b_{{{\text{NR}}}} + \left( {1 - \alpha } \right)b_{R} } \right)}}.$$
(5.25)

By substituting the optimal ticket-price in the demand function of each passenger, we obtain the following demanded quantities per passenger (residents and non-residents, respectively):

$$\begin{aligned} x_{0}^{R} & = \frac{{a_{R} - p_{S}^{0} }}{{b_{R} }} = \frac{{\alpha a_{R} b_{{{\text{NR}}}} + 2a_{R} b_{R} \left( {1 - \alpha } \right) - \left( {1 - \alpha } \right)b_{R} a_{{{\text{NR}}}} - c\left( {\alpha b_{{{\text{NR}}}} + \left( {1 - \alpha } \right)b_{R} } \right)}}{{2b_{R} \left( {\alpha b_{{{\text{NR}}}} + \left( {1 - \alpha } \right)b_{R} } \right)}}, \\ x_{0}^{{{\text{NR}}}} & = \frac{{a_{{{\text{NR}}}} - p_{S}^{0} }}{{b_{{{\text{NR}}}} }} = \frac{{\left( {1 - \alpha } \right)b_{R} a_{{{\text{NR}}}} + 2\alpha a_{{{\text{NR}}}} b_{{{\text{NR}}}} - \alpha a_{R} b_{{{\text{NR}}}} - c\left( {\alpha b_{{{\text{NR}}}} + \left( {1 - \alpha } \right)b_{R} } \right)}}{{2b_{{{\text{NR}}}} \left( {\alpha b_{{{\text{NR}}}} + \left( {1 - \alpha } \right)b_{R} } \right)}}. \\ \end{aligned}$$
(5.26)

Equilibrium with Ad Valorem Subsidies for Residents: The Monopoly Case

When the route is operated by a monopolist and an ad valorem subsidy only for residents is introduced, the airline solves the following maximization program:

$$\mathop {{\text{Max}}}\limits_{{P_{S} }} \alpha N\left( {p_{S} - c} \right)x^{R} + \left( {1 - \alpha } \right)N\left( {p_{S} - c} \right)x^{{{\text{NR}}}} ,$$
(5.27)

where \(x^{R}\) and \(x^{{{\text{NR}}}}\) represent, given the price that they finally pay, the quantity demanded by residents and non-residents, respectively. Thus, \(x^{R} = \frac{{a_{R} - \left( {1 - \sigma } \right)p_{S} }}{{b_{R} }}\) and \(x^{{{\text{NR}}}} = \frac{{a_{{{\text{NR}}}} - p_{S} }}{{b_{{{\text{NR}}}} }}\).

The first-order condition of the above maximization program is given by:

$$\frac{N}{{b_{R} b_{{{\text{NR}}}} }}\left( {\alpha b_{{{\text{NR}}}} \left( { - 2p_{S} \left( {1 - \sigma } \right) + c\left( {1 - \sigma } \right) + a_{R} } \right) + \left( {1 - \alpha } \right)b_{R} \left( { - 2p_{S} + c + a_{{{\text{NR}}}} } \right)} \right) = 0.$$
(5.28)

Solving the first-order condition we obtain the following optimal ticket-price:

$$p_{S}^{1} = \frac{{\alpha b_{{{\text{NR}}}} \left( {c\left( {1 - \sigma } \right) + a_{R} } \right) + \left( {1 - \alpha } \right)b_{R} \left( {c + a_{{{\text{NR}}}} } \right)}}{{2\left( {b_{R} \left( {1 - \alpha } \right) + \alpha b_{{{\text{NR}}}} \left( {1 - \sigma } \right)} \right)}}.$$
(5.29)

The ticket-price finally paid by residents with an ad valorem subsidy only for residents is given by:

$$p_{d}^{R} = p_{S}^{1} \left( {1 - \sigma } \right) = \frac{{\alpha b_{{{\text{NR}}}} \left( {c\left( {1 - \sigma } \right) + a_{R} } \right) + \left( {1 - \alpha } \right)b_{R} \left( {c + a_{{{\text{NR}}}} } \right)}}{{2\left( {b_{R} \left( {1 - \alpha } \right) + \alpha b_{{{\text{NR}}}} \left( {1 - \sigma } \right)} \right)}}\left( {1 - \sigma } \right).$$
(5.30)

By substituting the optimal ticket-price in the demand function of each passenger, we obtain the following demanded quantities per passenger (residents and non-residents, respectively):

$$\begin{aligned} x_{1}^{R} & = \frac{{a_{R} - p_{S}^{1} \left( {1 - \sigma } \right)}}{{b_{R} }} \\ & = \frac{{\alpha b_{{{\text{NR}}}} \left( {1 - \sigma } \right)\left( { - c\left( {1 - \sigma } \right) + a_{R} } \right) + \left( {1 - \alpha } \right)b_{R} \left( { - c\left( {1 - \sigma } \right) + 2a_{R} - a_{{{\text{NR}}}} \left( {1 - \sigma } \right)} \right)}}{{2b_{R} \left( {b_{R} \left( {1 - \alpha } \right) + \alpha b_{{{\text{NR}}}} \left( {1 - \sigma } \right)} \right)}}, \\ x_{1}^{{{\text{NR}}}} & = \frac{{a_{{{\text{NR}}}} - p_{S}^{1} }}{{b_{{{\text{NR}}}} }}\\ & = \frac{{\alpha b_{{{\text{NR}}}} \left( { - c\left( {1 - \sigma } \right) + 2a_{{{\text{NR}}}} \left( {1 - \sigma } \right) - a_{R} } \right) + \left( {1 - \alpha } \right)b_{R} (a_{{{\text{NR}}}} - c)}}{{2b_{{{\text{NR}}}} \left( {b_{R} \left( {1 - \alpha } \right) + \alpha b_{{{\text{NR}}}} \left( {1 - \sigma } \right)} \right)}}. \\ \end{aligned}$$
(5.31)

Equilibrium with Specific Subsidies for Residents: The Monopoly Case

When the route is operated by a monopolist and a specific subsidy only for residents is introduced, the airline solves the following maximization program:

$$\mathop {{\text{Max}}}\limits_{{P_{S} }} \alpha N\left( {p_{S} - c} \right)x^{R} + \left( {1 - \alpha } \right)N\left( {p_{S} - c} \right)x^{{{\text{NR}}}} ,$$
(5.32)

where \(x^{R}\) and \(x^{{{\text{NR}}}}\) represents, given the price that they finally pay, the quantity demanded by residents and non-residents, respectively. Thus, \(x^{R} = \frac{{a_{R} - p_{S} + s}}{{b_{R} }}\) and \(x^{{{\text{NR}}}} = \frac{{a_{{{\text{NR}}}} - p_{S} }}{{b_{{{\text{NR}}}} }}\).

The first-order condition of the above maximization program is given by:

$$\frac{N}{{b_{R} b_{{{\text{NR}}}} }}\left( {\alpha b_{{{\text{NR}}}} \left( { - 2p_{S} + s + c + a_{R} } \right) + \left( {1 - \alpha } \right)b_{R} \left( { - 2p_{S} + c + a_{{{\text{NR}}}} } \right)} \right) = 0.$$
(5.33)

Solving the first-order condition we obtain the following optimal ticket-price:

$$p_{S}^{1} = \frac{{\alpha b_{{{\text{NR}}}} \left( {s + c + a_{R} } \right) + \left( {1 - \alpha } \right)b_{R} \left( {c + a_{{{\text{NR}}}} } \right)}}{{2\left( {b_{R} \left( {1 - \alpha } \right) + \alpha b_{{{\text{NR}}}} } \right)}}.$$
(5.34)

The ticket-price finally paid by residents with a specific subsidy only for residents is given by:

$$p_{d}^{R} = p_{S}^{1} - s = \frac{{\alpha b_{{{\text{NR}}}} \left( {s + c + a_{R} } \right) + \left( {1 - \alpha } \right)b_{R} \left( {c + a_{{{\text{NR}}}} } \right)}}{{2\left( {b_{R} \left( {1 - \alpha } \right) + \alpha b_{{{\text{NR}}}} } \right)}} - s.$$
(5.35)

By substituting the optimal ticket-price in the demand function of each passenger, we obtain the following demanded quantities per passenger (residents and non-residents, respectively):

$$\begin{aligned} x_{1}^{R} & = \frac{{a_{R} - p_{S}^{1} + s}}{{b_{R} }} = \frac{{\alpha b_{{{\text{NR}}}} \left( {s - c + a_{R} } \right) + \left( {1 - \alpha } \right)b_{R} \left( { - c + 2s + 2a_{R} - a_{{{\text{NR}}}} } \right)}}{{2b_{R} \left( {b_{R} \left( {1 - \alpha } \right) + \alpha b_{{{\text{NR}}}} } \right)}}, \\ x_{1}^{\text{NR}} & = \frac{{a_{{{\text{NR}}}} - p_{S}^{1} }}{{b_{{{\text{NR}}}} }} = \frac{{\alpha b_{{{\text{NR}}}} \left( { - s - c + 2a_{{{\text{NR}}}} - a_{R} } \right) + \left( {1 - \alpha } \right)b_{R} \left( {a_{{{\text{NR}}}} - c} \right)}}{{2b_{{{\text{NR}}}} \left( {b_{R} \left( {1 - \alpha } \right) + \alpha b_{{{\text{NR}}}} } \right)}}. \\ \end{aligned}$$
(5.36)

Appendix 2: Some Empirical Evidence: The Case of Spain

Table 5.6 Ad valorem subsidy on flights from/to the Canary Islands from July 2018 to June 2019: interislands routes
Table 5.7 Ad valorem subsidy on flights from/to the Balearic Islands from July 2018 to June 2019: Interislands routes
Table 5.8 Ad valorem subsidy on flights from/to the Canary Islands from July 2018 to June 2019: domestic non-interislands routes
Table 5.9 Ad valorem subsidy on flights from/to the Balearic Islands from July 2018 to June 2019: domestic non-interislands routes

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Rus, G., Socorro, M.P., Valido, J., Campos, J. (2023). Cost–Benefit Analysis of Transport Policies: An Application to Subsidies in Air Transport Markets. In: Economic Evaluation of Transport Projects . Springer, Cham. https://doi.org/10.1007/978-3-031-35959-0_5

Download citation

Publish with us

Policies and ethics